Figure 3: Natural variation of OsAAP6 in a 197 accession rice mini-core collection and GUS activities in transgenic plants driven by eight promoter fragments and 5′-UTRs.
From: OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice

(a) OsAAP6 gene structure and natural variation between alleles from ZS97 and NYZ. (b) Natural variation of OsAAP6 in 197 rice accessions of a mini-core collection compared with the NILs. (c) Cladogram of eight haplotypes. (d) Protein contents of brown rice in sub-populations A and B; raw data are provided in Supplementary Table 5; n, is the number of accessions. P-values were generated by two-tailed t-tests. Error bars, s.e.m. (e) OsAAP6 transcript levels in the endosperms of Sub1 cultivars with class A and B at 5 DAF; the number of accessions analysed is shown below each bar. The P-value was generated by a two-tailed t-test. Error bars, s.e.m. (f) Diagrams for the four deletions of the OsAAP6 promoter and 5′-UTR fused to the GUS gene. (g) Quantitative analysis of GUS activity in transgenic plants. Y and G indicate young panicles at 2 days before flowering and grains at 5 DAF, respectively. Data were from the transgenic lines planted in a randomized complete block design with three replications. P-values were produced by the Duncan test. Error bars denote s.e.m.