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The subcortical maternal complex controls
symmetric division of mouse zygotes by
regulating F-actin dynamics
Xing-Jiang Yu1,2, Zhaohong Yi1, Zheng Gao1,2, Dandan Qin1,2, Yanhua Zhai1, Xue Chen1, Yingchun Ou-Yang1,

Zhen-Bo Wang1, Ping Zheng3, Min-Sheng Zhu4, Haibin Wang1, Qing-Yuan Sun1, Jurrien Dean5 & Lei Li1

Maternal effect genes play critical roles in early embryogenesis of model organisms where

they have been intensively investigated. However, their molecular function in mammals

remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC)

that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6).

Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is

necessary for cleavage beyond the two-cell stage of development. We document that the

SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central

position of the spindle and ensures symmetric division of mouse zygotes. We further

demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via

Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the

physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric

division of the zygote in early mouse development.
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D
uring cleavage-stage mouse development, cells divide
without a dramatic increase in the overall size of embryos
that remain constrained by the extracellular zona

pellucida. The actin cytoskeleton (F-actin) plays a fundamental
role in dividing cells1 and pharmacological intervention that
disrupts the integrity of the actin cytoskeleton adversely, affects
mouse fertilization and early cell division2–4. It has recently been
reported that the cytoplasmic F-actin meshwork is required to
maintain the mitotic spindle in the centre of the zygotes to ensure
symmetric division of early mouse embryos5. Although well-
documented in somatic cells and other model organisms, the
regulators of the actin cytoskeleton in mammalian zygotes,
remain largely unknown. Given the absence of transcription, it is
anticipated that oocyte-stored actin regulators, encoded by
maternal genes, will play critical roles in controlling formation
of the actin cytoskeleton in cleavage-stage mouse development.

Maternal effect genes are essential for early embryonic
development prior to zygote gene activation6. The pioneering
research conducted in Drosophila as early as 1980 (ref. 7), and
then widely extended to other model systems, well document
their essential roles in early embryonic development8–11.
However, it was not until 2000 that the first two maternal effect
genes were serendipitously discovered in mouse12,13. Although
maternal effect genes are hypothesized to control turnover of
maternal RNA and protein, activation of the embryonic genome,
cell proliferation and cleavage-stage embryonic development, the
molecular mechanism of these genes has not been well
documented in mammals.

We recently identified a subcortical maternal complex (SCMC)
uniquely expressed in mammalian oocytes and early embryos14.
The SCMC includes at least four proteins: FLOPED (official gene
symbol, Ooep), MATER (official gene symbol, Nlrp5) and
transducin-like enhancer of split 6 (TLE6, Tle6) that bind to
each other, as well as FILIA (official gene symbol, Khdc3) that
binds only to MATER14. The genes encoding all four proteins are
expressed during oogenesis and their proteins accumulate in
growing oocytes and persist in cleavage-stage embryos14–17.
Because it is excluded from regions of cell–cell contact, the SCMC
becomes polarized to the subcortex underlying the free surface of
external cells in cleavage-stage embryos16. Null mutations of the
single copy genes encoding Mater and/or Floped result in
cleavage-stage embryonic arrest and female sterility12,14. The
absence of Filia has a more subtle phenotype with delayed pre-
implantation development and decreased fecundity18. The
presence of MATER and/or FLOPED (but not FILIA) is
required for the formation of the SCMC14,18. Less is known
about the role of TLE6 in early mouse development.

TLE6 belongs to the Groucho/TLE transcriptional co-repressor
family that was first identified as a target of E2A-hepatic
leukaemia factor, and is widely expressed in mouse embryos
and adult tissues19. In neural progenitors, TLE6 antagonizes
TLE1 repression by competing with TLE1 binding to brain
factor 1 (BF-1)20. Tle6 is highly expressed in the newborn ovary
and its protein combines with MATER, FLOPED and FILIA to
form the SCMC14. Although TLE family proteins were
documented as the transcriptional co-repressors in signalling
pathways (Notch, Wnt, Hedgehog and Dpp/BMP)21, defining the
physiological functions of these proteins has been difficult
because multiple family members are broadly co-expressed in a
variety of tissues, which complicates interpretation of genetic
loss-of-function studies22.

In the present investigation, we report that Tle6 is a maternal
effect gene required for cleavage-stage embryogenesis. Tle6Null

mice are sterile, and the protein product of Tle6 is required
for formation of SCMC in mouse oocytes and early embryos.
Most importantly, we document a role for the SCMC as an

oocyte–embryo-specific protein complex that controls symmetric
division of mouse zygotes by regulating the actin cytoskeleton
through Cofilin.

Results
Localization of the SCMC in mouse oocytes and early embryos.
Individual proteins of the SCMC were observed in the subcortex
of eggs and early embryos after whole mount staining with
specific antibodies14–17,23,24. However, two components (MATER
and FLOPED) were additionally detected throughout the cyto-
plasm of eggs and embryos when the staining was performed after
fixation with paraformaldehyde and embedding in paraffin23,24.
To investigate the potential problem of antibody accessibility,
which was proposed to account for this discrepancy23,24, we
examined the localization of TLE6, FLOPED and MATER with
paraffin sections of mouse early embryos. To avoid potential
artifacts from embedding in agarose, we fixed mouse early
embryos in the oviduct and prepared paraffin sections for
staining. Consistent with the results from previous whole mount
studies14–17,23,24, TLE6, FLOPED and MATER were primarily
present in the subcortex of mouse zygotes in paraffin sections
(Fig. 1a–c). In particular, TLE6 was primarily located in the
subcortical domain of two-cell and morular stage embryos that
were fixed in the oviduct, embedded in paraffin and sectioned
(Supplementary Fig. 1a). The subcortical localization of TLE6 was
further confirmed by the injection of mouse zygotes with
messenger RNA (mRNA) encoding enhanced green fluorescent
protein (eGFP)-tagged TLE6 (Supplementary Fig. 1b and
Supplementary Movie 1).

Proximity ligation assays (PLA) provide highly specific and
sensitive in situ detection of protein interactions within a
complex25. Therefore, to further investigate the SCMC in
mouse oocytes and early embryos, we developed a PLA by
using probe-conjugated rabbit anti-TLE6 and -FLOPED
antibodies. The SCMC was primarily detected in the subcortex
of mouse eggs and early embryos and had largely disappeared in
early blastocysts (Fig. 1d and Supplementary Fig. 1c).
Surprisingly, although the abundance of TLE6 and FLOPED
detected by immunoblot and immunofluorescence was similar in
eggs and early embryos14–17, the SCMC detected by the PLA was
more abundant and concentrated in eggs, zygotes and morulae
than in two-cell embryos (Fig. 1d and Supplementary Fig. 1c).
The dynamic changes of the SCMC in mouse oocytes and early
embryos raised the possibility that the SCMC function may vary
depending on the embryonic stage. These results substantiate the
primary localization of the SCMC in the subcortex of mouse eggs
and early embryos.

Establishing and characterizing Tle6Null mice. To investigate the
physiological function of TLE6, a mouse strain lacking this pro-
tein was generated (Supplementary Fig. 1d–f). F1 Tle6þ /� female
and male mice produced 24 litters with a total of 166 offspring,
the genotypes of which (46 Tle6þ /þ , 28%; 80 Tle6þ /� , 48%; 40
Tle6� /� , 24%) were consistent with the expected Mendelian
frequency (1:2:1). Tle6þ /� and Tle6� /� mice grew normally to
adulthood. Unless otherwise stated, Tle6þ /� (Materþ /� ,
Flopedþ /� ) and Tle6� /� (Mater� /� , Floped� /� ) will be
referred to as control and Tle6Null( MaterNull, FlopedNull ),
respectively. SCMC null mice refer collectively to Tle6Null,
MaterNull and FlopedNull females.

Tle6 transcripts were absent in Tle6Null ovaries (Fig. 2a) and
TLE6 protein was not detected in Tle6Null eggs (Fig. 2b,c).
Although Tle6 is expressed early in mouse ovaries14, Tle6Null

females had normal ovarian histology in which all stage follicles
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Figure 1 | Expression of the SCMC in mouse eggs and early embryos. (a) Mouse zygotes were fixed in the oviduct, embedded in paraffin and sectioned

(4mm). The sections were stained with rabbit anti-TLE6 and imaged with confocal microscopy. Scale bar, 20mm. (b) Same as a, but with rabbit

anti-FLOPED antibodies. (c) Same as a, but with rabbit anti-MATER antibodies. (d) The location and proximity of FLOPED and TLE6 in eggs and zygotes

from normal females were determined with a proximity ligation assay (PLA) using rabbit anti-FLOPED and anti-TLE6 antibodies. After staining, the eggs/

embryos were imaged by confocal and differential interference contrast (DIC) microscopy. Scale bar, 20mm.

Control Tle6Null

Control Tle6Null

Control Tle6Null

Corpus
luteum

Corpus
luteum

Gapdh

Tle6

Con
tro

l

Tle6
Nu
ll

TLE6

GAPDH

Con
tro

l

Tle6
Nu
ll

70 kD

35 kD

800 bp

500 bp

Figure 2 | Characterization of Tle6 mutant mice. (a) Tle6 transcripts were detected in control (þ /� ), but not Tle6Null ovaries by semi-quantitative

RT–PCR using Gapdh as a control for integrity of sample RNA. (b) TLE6 protein was detected in control, but not in Tle6Null ovaries by immunohisto-

chemistry using rabbit anti-TLE6 antibodies. Scale bar, 100mm. (c) TLE6 protein was detected in control (þ /� ), but not Tle6Null, egg lysates by

immunoblot using antibodies to TLE6 and GAPDH (loading control). (d) Ovarian histology of control and Tle6Null ovaries after staining with periodic

acid-Schiff’s (PAS) reagent. Scale bar, 200mm. (e) DIC images of ovulated eggs from control and Tle6Null. Scale bar, 20mm.
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were present (Fig. 2d). After administration of gonadotrophins to
stimulate ovulation, the number and morphology of eggs
recovered from Tle6Null females were comparable to those
obtained from control female mice (Fig. 2e and Supplementary
Fig. 1g). However, after mating for 3 months with normal males
proven fertility, Tle6Null female mice produced no offspring
(Table 1). Thus, while not essential for oogenesis and ovulation,
TLE6 is required for the fertility of female mice.

The function of TLE6 in mouse early embryogenesis. Given its
maternal expression, we investigated the potential role of TLE6
in mouse pre-implantation development. Tle6Null females were
mated with normal males, and the embryos were recovered at
E0.5 (embryonic day 0.5), E1.5, E2.5 and E3.5. The number of
one-cell embryos recovered from Tle6Null female mice at E0.5 was
comparable to the controls (Fig. 3a,b). Compared with the con-
trol, the progression from one- to two-cell embryos was delayed
by 4–6 h (Supplementary Fig. 1h). At E2.5 and E3.5, when
embryos from the control developed into morulae and blas-
tocysts, respectively, the embryos from Tle6Null female mice
developed into fragmented cytoplasmic blebs (Fig. 3a,b). These
data demonstrate that TLE6 is essential for mouse pre-implan-
tation embryonic development.

TLE6 participates in the SCMC, and the phenotype of
Tle6Null female was similar to those of FlopedNull and MaterNull

females12,14. Therefore, eggs from control and Tle6Null females
were examined by immunoblot and immunostaining with specific
antibodies to individual components of the SCMC. Compared
with the protein levels in the control, MATER, Filia and FLOPED
were significantly decreased in the eggs from Tle6Null mice
(Fig. 3c–e). In addition, individual components of the SCMC
were diffusely present in Tle6Null eggs, except for TLE6 itself
which was absent, while the same proteins were primarily present
in the subcortex of control eggs (Fig. 3e). Because we did not
detect significant difference in the mRNA of Mater, Floped and
Filia between control and Tle6Null ovaries, we conclude that TLE6
is required for the stability of the SCMC.

The SCMC controls the spindle position in mouse zygotes.
Most embryos recovered from control female mice at E1.5 formed
two, equal-size blastomeres. In striking contrast, over 90% of two-
cell embryos from Tle6Null female mice had unequal-sized blas-
tomeres (Figs 3a and 4a). A similar phenotype was observed in
embryos from FlopedNull and MaterNull females14 (Fig. 4a),
raising the possibility that TLE6, and by extension the SCMC,
might be required for the symmetric division of mouse zygote.

Therefore, spindles in the zygotes from control and SCMC
mutant females were examined with FITC-labelled mouse
anti-a-tubulin antibody. Compared with controls, the mitotic
spindles from SCMC mutant females were dysmorphic, smaller
and significantly displaced from the cell centre (Fig. 4b,c;

Supplementary Fig. 2a,b). Because the spindle sizes were observed
to be significantly different among mouse lines, we compared
spindle size using the embryos from heterozygous female of each
line as controls. The spindle sizes in mutant zygotes were
significantly smaller than those in controls (Fig. 4d). Consistent
with acentric spindles, the SCMC mutant embryos divided
asymmetrically at telophase stage (Fig. 4e; Supplementary
Fig. 2a,b), resulting in embryos with unequal-sized blastomeres
at the two-cell stage (Fig. 4f; Supplementary Fig. 2a,b). Thus,
the percentage of unequally divided embryos was significantly
higher in the SCMC mutant mice compared with the control
when assayed in vivo or in vitro (Fig. 4a and Supplementary
Fig. 2c,d).

To further investigate spindle formation, one-cell embryos
from control or Tle6Null females were injected with mRNA
encoding b5-tubulin–GFP26 and cultured for live imaging. 34%
(84/251) of normal and 30% (150/502) of Tle6Null zygotes
survived microinjection and of these, 42% (34/84) of normal and
27% (40/149) of the Tle6Null zygotes progressed through nuclear
envelope breakdown. In total, 82% (28/34) of normal and 63%
(17/27) of the Tle6Null zygotes were successfully labelled for live
imaging of spindle morphology. Typical spindle morphology was
observed in all of the normal zygotes (n¼ 28) and in none of the
Tle6Null zygotes (n¼ 17; Fig. 4g, Supplementary Movies 2 and 3).
Compared with controls, spindle orientation was significantly
altered (Fig. 4g; 10/17, 58%), which suggests that spindle
movement is a major cause for acentric spindle localization in
Tle6Null zygotes (Fig. 4b,c). Collectively, the above analyses
document that the SCMC is required for spindle formation and
its position in mouse zygotes.

The SCMC regulates cytoskeleton dynamics in mouse zygotes.
The cytoplasmic F-actin meshwork controls the central spindle
position in mouse zygotes5. To explore the potential role of the
SCMC in centring the spindle, mitotic zygotes from normal and
Tle6Null female mice were stained with fluorescence-labelled
phalloidin. Consistent with this earlier report, F-actin was
primarily present in the subcortex and formed a meshwork in
normal mitotic zygotes (Fig. 5a). However, the cytoplasmic
F-actin didn’t form the fine meshwork in zygotes from Tle6Null

female mice (Fig. 5b; Supplementary Fig. 3a). The cytoplasmic
F-actin meshwork was further investigated by live imaging
of F-actin with UtrCH–eGFP27, which confirmed the absence of
F-actin meshwork in Tle6Null embryos (Fig. 5c; Supplementary
Movies 4 and 5). A similar phenotype was observed in the
cytoplasm of zygotes from MaterNull and FlopedNull females
(Supplementary Fig. 3b,c). Together, these data suggest that the
SCMC controls spindle position through the cytoplasmic F-actin
meshwork in mouse zygotes.

The SCMC co-localizes with F-actin in the subcortex of mouse
eggs and early embryos, and the defect of F-actin in SCMC null
zygotes raised the possibility that the SCMC directly regulates
subcortical F-actin. To address this question, the oocytes and
zygotes (pronuclear stages 5) from control (heterozygote) and
SCMC mutant (Tle6Null, MaterNull, FlopedNull) female mice were
paired and F-actin was stained with fluorescence-labelled
phalloidin and mouse anti-pan-actin antibody. The immuno-
fluorescent intensity of subcortical F-actin in eggs from Tle6Null

female was similar to that in controls (Supplementary Fig. 4a,b).
The subcortical F-actin was further investigated by injecting
oocytes with the mRNA encoding UtrCH–eGFP, which was
recently used to detect the thickness of subcortical F-actin in
mouse oocytes28. Compared with controls, the thickness
of subcortical F-actin was no different in Tle6Null oocytes at
different stages (Supplementary Fig. 4c,d). However, the

Table 1 | Fertility of Tle6Null female.

Female
Male

Tle6þ /� * Tle6� /� w

Tle6þ /þ 7.1±2.5 (38) 0 (9)
Tle6þ /� 6.4±2.6 (55) 0 (7)
Tle6� /� 6.5±2.4 (114) 0 (10)

Litter sizes of Tle6þ /� and Tle6Null female mice after mating with Tle6þ /þ , Tle6þ /�and
Tle6� /� males were presented as mean±s.d.
*Number of litters.
wNumber of females.
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immunofluorescent intensity of subcortical F-actin in zygotes was
significantly decreased in SCMC mutant female mice compared
with controls (Fig. 6a,b and Supplementary Fig. 5a,b). The
thickness of subcortical F-actin detected by UtrCH–eGFP was
also significantly decreased in the zygotes from Tle6Null females
(Fig. 6c,d). In a complementary manner, cytoplasmic G-actin
detected with Alex488-DNase I was significantly increased in
zygotes from SCMC mutant females, and thickened F-actin
bundles were observed in their cytoplasm (Fig. 6e and
Supplementary Fig. 5c,d). These results suggest that the SCMC
regulates the actin dynamics by controlling subcortical F-actin in
mouse zygotes.

The SCMC regulates F-actin via Cofilin in mouse zygotes. The
actin cytoskeleton is a dynamic structure regulated at multiple
levels by interacting proteins including Cofilin, Profilin, Arp2/3,
Fmn2 and CDC42. To investigate how the SCMC regulates
F-actin, we stained mouse zygotes from SCMC null females with
protein-specific antibodies. The expression pattern of Arp2,
Fmn2 and CDC42 in the subcortex of Tle6Null zygotes was similar
to that in controls (Supplementary Fig. 6a–c). However, Cofilin
was less concentrated in the subcortex and more diffusely present
in the cytoplasm of zygotes from Tle6Null females compared with
normal controls (Supplementary Fig. 6d). The changed localiza-
tion of Cofilin was also observed in zygotes from FlopedNull
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Figure 3 | The effect of TLE6 on early mouse embryogenesis. (a) After hormonal stimulation and in vivo mating with normal males, embryos were

flushed from the oviduct of control and Tle6Null female mice at E0.5, E1.5, E2.5 and E3.5 and imaged by DIC. Scale bar, 50mm. (b) The number

(mean±s.e.m.) of embryos flushed from the oviducts of more than five controls and Tle6Null female mice at E0.5, E1.5, E2.5 and E3.5. after hormonal

stimulation and mating with normal male mice. (c) Immunoblot of egg (20) lysates from control and Tle6Null female mice probed with antibodies to

MATER, Filia, FLOPED, TLE6 and GAPDH. (d) The abundance (mean±s.e.m.) of the SCMC components in control and Tle6Null eggs (20) was determined

by immunoblot using four independent samples from each group and setting protein abundance at 100% for control eggs. (e) Localization of TLE6,

MATER, FLOPED and FILIA in ovulated eggs from control and Tle6Null females was determined by confocal microscopy and DIC. Phalloidin labelled with

Alex Fluor 546 was used to detect F-actin. Scale bar, 20mm.
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females (Supplementary Fig. 6d). On immunoblots, Cofilin,
Profilin, Arp2, Arp3 and CDC42 were detected at similar levels in
the oocytes and zygotes from SCMC null mice compared with
controls (Fig. 7a; Supplementary Fig. 6e,f). Phosphorylated, but
not un-phosphorylated Cofilin, was significantly decreased in
SCMC null eggs and zygotes (Fig. 7a,b) including those mitotic
zygotes from Tle6Null females (Fig. 7c and Supplementary
Fig. 6g).

Co-localization of the SCMC with Cofilin in the subcortex of
mouse zygotes and Cofilin-related defects in SCMC null zygotes
prompted investigation of physical interactions between the two.
Although Cofilin was weakly co-immunoprecipitated by rabbit
anti-TLE6 antibody from ovarian lysates (Supplementary Fig. 6h),

Cofilin was specifically pulled down by TLE6 and MATER
antibodies from the lysate of normal eggs (Fig. 7d). This direct
interaction was substantiated by a proximal ligation assay using
Cofilin and FLOPED antibodies, which primarily located the
interaction in the periphery of zygotes from normal, but not
FlopedNull, female mice (Fig. 7e). Taken together, these data
suggest that the SCMC regulates subcortical F-actin through
Cofilin, a known regulator of actin cytoskeleton29.

Cofilin is required for the symmetrical division of zygotes.
Increased Cofilin activity has been shown to cause rapid regres-
sion of the cleavage furrow and inhibit further cleavage in
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Figure 4 | Disrupted SCMC affects zygote cleavage and spindle function. (a) Embryos were flushed from the oviduct of five SCMC mutant or control

females at E1.5 and stained with Hoechest 33342. Size of each blastomere was calculated by the area of central optical section. The embryo was regarded

as asymmetric when the ratio of blastomere sizes in one embryo varied by 410%. Left panel showed DIC images with DNA staining from control and

SCMCNull zygotes. Right panel showed percentage (mean±s.e.m.) of asymmetric divisions by using four to five independent samples (Tle6Null, 4;

FlopedNull, 5; MaterNull, 4). (b) Zygotes were isolated from Tle6þ /� (control) and Tle6Nullfemales 28–29 h and 32–33 h after hCG, respectively, cultured for

2–3 h to metaphase and stained with FITC-labelled a-tubulin antibody phalloidin labelled with Alexa Fluor 546 (F-actin), Hoechest 33342 and TLE6

antibody. Scale bar, 20mm. (c) Zygotes from control and Tle6Null females were stained as in b. Spindle position was determined by the distance

(d, mean±s.e.m.) from the centre (red cross) of zygotes (circle) to the central chromosome (blue line) in their spindle (small oval). The zygote number for

each group: Tle6þ /� (n¼ 32), Tle6Null (n¼ 35); Flopedþ /� (n¼ 50), FlopedNull (n, 38); Materþ/� (n¼ 51), MaterNull (n¼42). ***Po0.001 indicates

statistically significant differences using Student’s t-test. (d) Zygotes from control and null females were treated as in b to determine relative length

(mean±s.e.m.) of spindle at metaphase. Spindle size in control (Tle6þ /� , n¼ 37; Flopedþ /� , n¼62; Materþ/� , n¼44) and null zygotes

(Tle6Null, n¼ 35; FlopedNull, n¼ 37; MaterNull, n¼41) are reported as ratio (%) of the spindle to cell length. Student’s t-test was used to test the statistical

differences between controls and SCMCNull zygotes. **Po0.01; ***Po0.001. (e) Zygotes from control and Tle6Null females were cultured to telophase and

stained as in b. Scale bar, 20mm. (f) Two-cell embryos were stained as in b. Scale bar, 20mm. (g) Zygotes from control and Tle6Null were microinjected with

b5-tubulin mRNA, cultured for 4–8 h and imaged with the UltraVIEW VoX system to detect spindle movement. Images are representative frames from

control (Supplementary Movie 2) and Tle6Null (Supplementary Movie 3) mouse zygotes. Scale bar, 20mm.
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Xenopus zygotes30. To investigate the role of Cofilin in mouse
pre-implantation development, we injected zygotes with a
constitutively active mutant of Cofilin (Cofilin-S3A, in which
Cofilin at Ser3 was replaced with alanine) and an inactive mutant
S3E (Cofilin-S3E, in which Cofilin at Ser3 was replaced with
glutamine)31,32. The immunofluorescent intensity of subcortical
F-actin was significantly decreased in zygotes injected with the
mRNA of Myc-Cofilin-S3A, but not in zygotes injected with Myc-
Cofilin-S3E when paired zygotes were compared (Fig. 7f,g). The
injection of Cofilin-S3A, but not Cofilin-S3E, disrupted the
cytoplasmic F-actin meshwork and the central position of spindle
in mouse zygotes (Fig. 7h,i), and resulted in asymmetric two-cell
embryos (Fig. 7j,k). We further treated mouse zygotes with a
cell-permeable synthetic peptide (S3 peptide) that contains the
phosphorylation site of Cofilin and competitively inhibits

phosphorylation of the endogenous protein33. The embryos
treated with the S3 peptide had defects similar to those injected
with Cofilin-S3A (Fig. 7g,i–k). Thus, these results indicate that
Cofilin plays an important role in the actin cytoskeleton that
centrally positions the spindle in mouse zygotes.

Discussion
Only a limited number of maternal effect genes (o30) have been
characterized in mammals, which reflects technological limita-
tions, including the paucity of eggs and early embryos, that
complicate molecular investigations6,34. We recently identified a
SCMC that is specifically expressed in mammalian oocyte–
embryos and minimally includes FLOPED, MATER, Filia and
TLE6 proteins14. Although FILIA, which contains a KH domain,
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has been shown to interact with RNAs35, the molecular functions
of the proteins in SCMC are largely unknown. TLE6 regulates
gene expression by interacting with BF-1 as a co-repressor of
TLE1 in neural progenitors20. However, TLE6 does not localize in
the nucleus of mouse oocytes and early embryos. Herein, we have
documented that the absence of TLE6 disrupts the SCMC and
adversely affects the F-actin cytoskeleton, leading to asymmetric
cell division and cleavage-stage embryonic death.

The actin cytoskeleton forms different structures depending on
interacting proteins and at least 15 distinct F-actin structures
have been documented in metazoan cells36. Because eggs and
early embryos are unique37, the presence of specific components
for regulating their actin cytoskeletons is anticipated in these cells.
Earlier studies, using F-actin affinity chromatography, identified
novel F-actin-binding proteins in eggs and embryos of Drosophila
melanogaster and Caenorhabditis elegans38,39. The functional

characterization of these proteins has provided insights into the
role of F-actin cytoskeleton40,41.

Cofilin plays a central role in modulating F-actin dynamics and
is commonly present in highly dynamic F-actin structures
observed in locomotory and invasive protrusions of motile
cells29,42. Cofilin has been also shown to increase the
concentration of G-actin by promoting F-actin depolymerizat-
ion, which contributes to F-actin assembly43. Whether Cofilin
promotes polymerization or depolymerization depends on its
concentration relative to actin and the presence of other actin-
binding proteins29. In normal mouse zygotes, Cofilin is primarily
located in the subcortex44 and we now document that it interacts
and co-localizes with the SCMC. The absence of the SCMC affects
the activity and the localization of Cofilin, but not other F-actin
regulators. The decreased subcortical F-actin, increased G-actin
and thickened cytoplasmic F-actin bundles suggests that
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increased activity of Cofilin disrupts actin filaments, which leads
to the off-centre spindle observed in the SCMC null mutants.
Recently, Xenopus ADF/Cofilin and its activator, Slingshot

phosphatase, have been identified as key regulators of actin
dynamics essential for spindle microtubule assembly during
Xenopus oocyte maturation45. Thus, the SCMC may regulate
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spindle assembly by controlling F-actin dynamics through Cofilin
in mouse zygotes.

The cytoplasmic F-actin network was previously observed in
Drosophila syncytial embryos46 and in starfish oocytes where,
during meiosis, M-phase microtubules are short relative to the
180-mm-diameter oocyte47. Subsequently, several groups reported
that cytoplasmic F-actin networks play critical roles in the meiosis
of mouse oocytes48–50. Although the absence of cytoplasm F-actin
network results in the defect of spindle translocation in MaterNull

(ref. 51), oocytes from these mice undergo normal meiosis and
the ovulated eggs can be fertilized, implying that the SCMC and
the cytoplasm F-actin network play relatively modest roles in the
maturation of mouse oocytes. A specific Arp2/3-dependent
F-actin domain in the cortex of mouse oocytes was reported to
be required for asymmetrical spindle position during meiosis28.
However, subcortical F-actin and Arp2/3 proteins were
not affected in oocytes from SCMC mutant female mice. These
observations suggest that different pathways may be required to
coordinately regulate spindle location during mouse oogenesis
and early embryonic development.

Although the SCMC interacts with F-actin and Cofilin, we have
not yet detected direct in vitro binding of Cofilin with any
individual component of the SCMC. However, the molecular mass
of the SCMC is between B669 and 2,000 kDa, which is much
larger than the aggregate mass (B250 kDa) of the known
proteins34. Thus, the presence of additional proteins in the
SCMC is likely and one or more of them could directly interact
with Cofilin in the regulating F-actin polymerization. Taken
together, our results demonstrate that Tle6 is a novel maternal
effect gene that is essential for mouse early embryonic
development. A primary role of the TLE6 protein is to stabilize
the SCMC that controls Cofilin regulation of F-actin dynamics to
ensure symmetric cell division and proper cell division of mouse
zygotes. Similar mechanisms may play important roles in human
early embryonic development, defects of which will result in the
arrest of embryonic development and human infertility.

Methods
Mouse lines and establishment of transgenic mice. SCMC mutant mouse lines
were maintained in compliance with the guidelines of the Animal Care and Use
Committee of the Institute of Zoology at the Chinese Academy of Sciences (CAS).
To generate Tle6 mutant mice, the targeting vector contained a neomycin-resistant
cassette that replaced the transcription and translational start sites, as well as the
first two exons of the coding region of Tle6 was constructed using DNA recom-
bineering (Supplementary Fig. 1d). Successfully targeted heterozygous ES cells were
identified by PCR with specific primers and confirmed by Southern hybridization
of Nhel-digested genomic DNA using probes immediately 50 and 30 to the targeting
vector (Supplementary Fig. 1e,f). Two clones (#107 and #111) from successfully
targeted heterozygous ES cell lines were injected into blastocyst embryos to
establish transgenic mouse lines. Two male chimera were used for germ line
transmission of the targeted allele (� ) and subsequent genotyping was determined
by PCR products of mouse genomic DNA. P1 (50-actctaacccaggccatcct-30) and P2
(50-tcagcaggtgaaggtgattg-30) were used to detect the normal (þ ) allele (875 bp),
and primers P1 and P3 (50-cagaaagcgaaggagcaaag-30) were used to detect the null
(� ) allele (449 bp) in PCR genotyping. Conditions for the PCR were: 1 cycle at
94 �C for 4min; 40 cycles at 94 �C for 30 s, 60 �C for 30 s and 72 �C for 1min, and a
final extension at 72 �C for 10min. Genomic DNA from the tail of þ /þ , þ /�
and � /� mice was sequenced to confirm proper homologous recombination. The
successful depletion of Tle6 was further confirmed by the absence of mRNA
(reverse transcription PCR (RT–PCR)) and proteins in the ovaries and oocytes
from Tle6� /� female mice (Fig. 2a–c).

Collection of eggs and embryos and assessment of fertility. Female mice (6–8
week old) were stimulated with gonadotrophins to obtain ovulated eggs or embryos
at defined times. Ovulated eggs and embryos were collected in M2 medium and
either imaged or snap frozen for storage at � 80 �C prior to biochemical analyses.
Timed embryos were collected in M2 medium and cultured in KSOM (Merck
Millipore) at 37 �C in 5% CO2. Zygotes were treated with the S3 fragment peptide
that contains the phosphorylation site of Cofilin and competitively inhibits phos-
phorylation of endogenous ADF/Cofilin (AnaSpec, Fremont, CA, USA; 5mgml� 1

in DMSO as the stock solution). Periodic acid-Schiff’s staining was performed as

previously described14. Briefly, ovaries from heterozygous and homozygous Tle6
mice were fixed, embedded in polymethyl methacrylate, sectioned and stained with
periodic acid-Schiff’s reagents. Commercially obtained ICR and C57BL/6J mice
were used as normal controls.

In vivo fertility was assessed by 2:1 caging of one Tle6þ /� (control) and one
Tle6Null female with individual Tle6þ /þ , Tle6þ /� or Tle6Null male for over 3
months. Successful matings were verified by the presence of a post-coital vaginal
plug after which females were caged separately. More than five independent cages
were set for the experiment.

Immunoblots and immunohistochemistry. Primary antibodies included: rabbit
anti-FLOPED (1:1,000 for western blot, 1:500 for immunohistochemistry), rabbit
anti-TLE6 (1:1,000 for western blot, 1:500 for immunohistochemistry), rabbit anti-
MATER (1:5,000 for western blot, 1:1,000 for immunohistochemistry) and sheep
anti-FILIA (1:1,000 for western blot, 1:200 for immunohistochemistry )14, mouse
monoclonal antibody to MATER (1:500) generated by Abmart (Shanghai, China),
mouse monoclonal anti-GAPDH (1:3,000, Abmart), mouse monoclonal antibody
to a-tubulin (1:200, FITC-conjugated, Sigma-Aldrich), rabbit anti-CDC42
(1:1,000), rabbit anti-Cofilin-1 (1:1,000 for western blot, 1:100 for immuno-
histochemistry), rabbit anti-phospho-Cofilin 1 (Ser3, 1:1,000), rabbit anti-myc
(1:200) and rabbit anti-Profilin 1 (1:1,000; Cell Signalling Technology, Danvers,
MA, USA), mouse monoclonal anti-pan-actin (1:200), rabbit anti-Arp2 (1:1,000 for
western blot, 1:200 for immunohistochemistry), mouse monoclonal anti-Arp3
(1:1,000) and rabbit anti-Fmn2 (1:200) (Abcam, Cambridge, MA, USA) and rabbit
anti-CDC42 (1:50, Santa Cruz, for immunofluorescence). The secondary antibodies
included: goat anti-mouse conjugated with Alexa Fluor 488 (1:200), donkey anti-
rabbit conjugated with Alexa Fluor 488 (1:1,000), donkey anti-rabbit conjugated
with Alexa Fluor 633 (1:1,000), donkey anti-sheep conjugated with Alexa Fluor 488
(1:500) (Invitrogen, Life Technologies, Grand Island, NY, USA), donkey anti-
rabbit, -sheep conjugated with horseradish peroxidase (HRP) (1:1,000, Jackson
ImmunoResearch, West Grove, PA, USA) and goat anti-mouse with HRP (1:1,000,
Abmart).

Samples for immunoblots were prepared with SDS sample buffer, separated by
NuPAGE 4–12% SDS–PAGE and transferred to PVDF membranes (Invitrogen).
The blots were pre-treated with Superblock Blocking Buffer (Pierce, Thermo Fisher
Scientific, Rockford, IL, USA), incubated (4 �C, overnight) with primary antibodies,
washed once with PBST14 and incubated (1 h, room temperature (RT)) with HRP-
conjugated secondary antibodies. Immunoreactivity was detected with SuperSignal
West Dura Extended Duration Substrate (Pierce). Images of the blots were
obtained by using a Bio-RAD Chemi DocTMXRsþ (Bio-Rad Laboratories,USA)
with Image Lab software.

Immunohistochemistry was performed with EnVision G/2 System/AP (DAKO,
Carpinteria, CA, USA) according to the manufacturer’s protocol.
Immunofluorescent staining for mouse eggs and embryos was modified from a
previously reported protocol52. In brief, eggs and embryos were fixed with 130mM
KCl, 25mM HEPES (pH 7.0), 3mM MgCl2, 4% paraformaldehyde, 0.15%
glutaraldehyde, 0.06% Triton X-100, permeabilized in PBS containing 0.5% Triton
X-100, blocked with 5% donkey serum and 0.1% BSA in PBS at RT for 1 h,
incubated (over night, 4 �C) with primary antibodies followed by secondary
antibody (1 h, RT). F-actin, G-actin and DNA were detected with Alexa Fluor
546-labelled phalloidin, DNase I labelled with Alexa Fluor 488 and Hoechest
(Invitrogen), respectively. Alternatively, eggs and embryos were recovered together
with oviducts, processed as above and sectioned (4 mm) prior to immunostaining.
Immunofluorescent images were obtained on an Axioplan Zeiss microscope (LSM
780, Carl Zeiss, Thornwood, NY, USA) and the intensity of immunofluorescent
signal was analyzed with ZEN lite 2011 (Carl Zeiss).

Protein–protein interactions. Co-immunoprecipitation (Co-IP) of ovarian lysate
was performed with ProFoundTM Mammalian Co-Immunoprecipitation Kit
(Pierce) according to the manufacturer’s protocol. Briefly, antibody coupling gel
was conjugated with specific antibodies, incubated (1–1.5 h, RT) with ovarian
lysates, washed with PBST and eluted with elution buffer. Co-IP products were
further analyzed by immunoblot. Precleared egg lysate from normal and Tle6 or
mater null eggs (150) was precipitated as described previously with protein
G-Separose beads (Santa Cruz, G2613) by using TLE6 and MATER antibodies16.
Mouse immunoglobulin G was used as the negative control.

In situ detection of protein–protein interaction was performed by PLA
according to the manufacturer’s protocol using the DuolinkII Detection Kit with
PLA PLUS and MINUS Probes for rabbit antibodies (Olink Bioscience, Sigma-
Aldrich). Rabbit anti-FLOPED, anti-TLE6, anti-Cofilin-1 antibodies were
conjugated with PLA PLUS, PLA MINUS and PLA MINUS probes, respectively.
The zygotes from FlopedNull and Tle6Null females were used as negative controls.

Plasmid construction, microinjection and time-lapse imaging. The vectors
pCS2-Myc-confilin S3E and Cofilin-S3A were amplified from mouse ovarian
complementary DNA (cDNA) with the primers (Cofilin-S3E forward primer,
50-ttcaggccggccgatggccGAAggtgtggctgt-30 ; Cofilin-S3A forward primer, 50-ttcagg
ccggccgatggccGCTggtgtggctgt-30 ; reverse primer, 50-ttaaggcgcgcctcacaaaggct
tgccct-30). The pCS2-Tle6–eGFP was cloned from mouse ovarian cDNA with the
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primers (Tle6 forward primer, 50-ttccccgcggatgacttcccacagacagag-30 ; Tle6 reverse
primer, 50-cgggaccggtaacaggtacttgatgtggta-30). The pUtrCH–eGFP and pRN3-b5-
tubulin–GFP were from Addgene (http://www.addgene.org/) and Dr Marie-Hélène
Verlhac, respectively.

The transcripts (mRNA) of Myc-Cofilin-SA, Myc-Cofilin-S3E, b5-tubulin–
GFP26, UtrCH–eGFP27 and Tle6–eGFP were prepared in vitro using linearized
plasmid with a mMessage mMachine kit (Ambion). About 5–10 pl of the b-5-
tubulin–GFP, UtrCH–eGFP and Tle6–eGFP mRNA purified with the RNeasy
MinElute Cleanup Kit (Qiagen, Valencia, CA, USA) were microinjected into the
cytoplasm of zygotes and cultured in KSOM at 37 �C in 5% CO2 for 4–8 h. Hoechst
33342 (Invitrogen) was used to stain DNA. After developing into the appropriate
stages, the injected zygotes were recovered for further experiments (time-lapse
imaging or immunostaining). The time-lapse images of b5-Tubulin–GFP, UtrCH–
eGFP and TLE6–eGFP were processed by the Velocity software 6.0.1 (Perkin
Elmer) after the zygotes were imaged with the UltraVIEW VoX confocal imaging
system (Perkin Elmer).

Measurements of cortical F-actin were modified from a previous report28.
Briefly, the confocal images of UtrCH–eGFP were obtained at 37 �C in 5% CO2,
KSOM medium, using a Plan APO 60X/1.4 UC PFS OIL objective with a Nikon
microscope. One focal plane corresponding to the embryo’s largest diameter in the
unsaturated images was measured with the Velocity software 6.0.1 (Perkin Elmer).
Each embryo was measured four times and the mean value was reported as the
thickness of cortical F-actin.

RNA quantitation and expression. Total RNA was isolated from Tle6þ /� and
Tle6Null mouse ovaries using an RNeasy Mini Kit (Qiagen). Contaminating
genomic DNA was removed by digestion with RNase-free DNase I (Qiagen) and
RNA was reverse transcribed to cDNA using the Superscript III First Strand
System (Invitrogen). The OneStep RT–PCR Kit (Qiagen) was used in semi-
quantitative RT–PCR to assess the abundance of normal and mutant Tle6 tran-
scripts in Tle6 mutant mice (forward primer: 50-ggtggacttaatcagatttgtgacc-30 and
reverse primer: 50-aattgccagagtgctgtgcta-30). Gapdh was amplified as a control of
RNA integrity (forward primer: 50-accacagtccatgccatcac-30 and reverse primer:
50-tccaccaccctgttgctgta-30). Quantitative real-time RT–PCR was used to determine
the abundance of Tle6, Floped, Filia and Mater transcripts using TaqMan
probes and gene-specific primers (Mm00509585_gl, Mm00475107_m1 and
Mm00488691_ml) and GAPDH (Applied Biosystems, Foster City, CA, USA) as an
endogenous control for normalization. Each data point was the average of duplicate
assays performed on three independently obtained biological samples and
expressed as a per cent of Gapdh abundance (mean±s.e.m.).

Statistical analyses. Quantitative analyses were based on at least 3–5 independent
biological samples and expressed as the mean±s.e.m. Statistical analyses were
carried out using Student’s t-test for comparing the difference between two groups
that showed normal (Gaussian) distribution with GraphPad Prism software, with
P-values o0.05 considered significant.
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