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Chiral spin liquid and emergent anyons
in a Kagome lattice Mott insulator
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Topological phases in frustrated quantum spin systems have fascinated researchers for
decades. One of the earliest proposals for such a phase was the chiral spin liquid, a bosonic
analogue of the fractional quantum Hall effect, put forward by Kalmeyer and Laughlin in 1987.
Elusive for many years, recent times have finally seen this phase realized in various models,
which, however, remain somewhat artificial. Here we take an important step towards the goal
of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott
insulator on the Kagome lattice with broken time-reversal symmetry. We discuss the
emergent phase from a network model perspective and present an unambiguous numerical
identification and characterization of its universal topological properties, including ground-
state degeneracy, edge physics and anyonic bulk excitations, by using a variety of powerful
numerical probes, including the entanglement spectrum and modular transformations.
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he low-energy properties of frustrated quantum spin

systems—Iloosely speaking, systems of interacting spins in

which the local energetic constraints cannot all be
simultaneously satisfied—have fascinated researchers for many
decades. These systems arise in the description of the spin degrees
of freedom of Mott insulators, that is, insulating states where the
fluctuations of the charge degrees of freedom have been
suppressed by interactions, whereas the spin degrees of freedom
remain free to form non-trivial quantum phases. Such states are
found in many materials, but can also be artificially made in the
laboratory using cold atomic gases!2. In most situations, the spins
collectively order into some pattern that can be described through
a local order parameter. A more exciting possibility, coined spin
liquid phase?, is that the spins do not order into such a local
pattern; instead, a more exotic state governed by strong quantum
fluctuations emerges.

In a famous paper in 1987, Kalmeyer and Laughlin?
hypothesized a scenario where a chiral topological spin liquid
(CSL) is formed. In this elusive phase of matter, the spins form a
collective state that can only be described in terms of emergent,
non-local topological properties. So far, this behaviour has
experimentally only been observed in fractional Quantum Hall
systems™®. Such topologically ordered liquids’ are characterized
through a number of universal properties ranging from
topologically protected gapless edge states®® and a ground-state
degeneracy that depends on the topology of the sample” to exotic
excitations that carry fractional charge and satisfy neither
fermionic nor bosonic exchange statistics!’. These anyonic
particles!! can serve as key ingredients in topological quantum
computers'?, making them relevant also for technological
applications.

In the specific case of the chiral spin liquid as proposed by
Kalmeyer and Laughlin, the universal properties of the ground
state are captured by the bosonic v=1/2 Laughlin state!>!4,
Probably the most striking property of this state are its semionic
bulk excitations: when exchanging two such semions, the wave
function describing the collective state of the system acquires a
complex phase i, in stark contrast to conventional bosons or
fermions, where the factor is 1 and — 1, respectively. Equally
striking is the emergence of a topologically protected chiral edge
state with a universal spectrum at the boundary of the sample.
This leads to unidirectional transport along the boundary of the
sample, while the bulk remains insulating. The correspondence
between edge and bulk physics has been used as a powerful
experimental probe into the physics of fractional quantum Hall
systems. Finally, the ground-state degeneracy of this state
depends on the topology of the underlying manifold; for
example, when placed on a torus, two ground states are found.

Over the last decades, much research has been devoted to
finding realistic spin Hamiltonians that have such a chiral
topological phase as their ground state, but to this date, the only
known examples are Hamiltonians that are unlikely to be relevant
for any material'>~23, Here we study a simple spin model on the
Kagome lattice (Fig. 1a) that in an appropriate parameter regime
offers an effective description of the low-energy properties of the
Hubbard model, which is the minimal relevant model for
itinerant interacting electrons, in the presence of time-reversal
symmetry breaking. The Hubbard Hamiltonian reads
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Here a magnetic field induces both a Zeeman term h, as well as a
flux @ through each elementary triangle of the lattice, such that
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for i,jk clockwise around a triangle we have t;tjity; = t3exp(i(l)),
as indicated by the arrows in Fig. la. When ®#0 or h,#0,
time-reversal symmetry is broken. When considered at half-
filling, {n) =1, and in the limit of large repulsive interaction
strength U, a Mott insulating state is formed and an
effective spin model that captures the low-energy spin physics
of the Mott insulator can be derived from perturbation theory
in t/U.

Here we will demonstrate conclusively that in a very wide
parameter regime where a large enough magnetic flux @ breaks
time-reversal symmetry, the ground state of the effective spin
model is a CSL with emergent anyonic excitations. It can thus be
expected that there is a parameter regime where the full Hubbard
model of equation (1) realizes this same phase, but quantitative
studies of this question are beyond the current state-of-the-art in
numerical techniques and are thus left to future work.

Results

Model. Starting from the Hubbard model of equation (1), a t/U

expansion at half filling gives the following spin Hamiltonian?*:

H:]HBZS:i -S}—i—hzZSf
(i.j) i

I D S (SxS)+ .

ijkeA

(2)

where for the three-spin term, the ij,k are ordered clockwise
around the elementary triangles of the Kagome lattice. The term
Ligk = Si - (8§jxSk), referred to as the scalar spin chirality?>26,
breaks time-reversal symmetry and parity, but preserves SU(2)
symmetry. To lowest order, the coupling parameters depend
on the parameters of the Hubbard model as Jyp~ /U and
J,~®F/U? ignoring further subleading terms. We choose to
parametrize the model using Jiyp = Jcosl) and ], = Jsin0 and set = 1.

In the absence of time-reversal symmetry breaking (0 =0 and
h,=0), this is the Kagome lattice nearest-neighbour Heisenberg
antiferromagnet, which has become a paradigmatic model for
frustrated magnetism?’~2° with a possible spin liquid ground
state and relevance to the description of materials®. Recent
numerical work®*-32 has indicated that this model may realize a
time-reversal symmetric Z, topological spin liquid, whereas other
numerical results give evidence for a gapless spin liquid
phase3>34,

Here we explore the ground-state phase diagram of equation (2)
away from the time-reversal invariant Heisenberg point 6 = 0. In
particular, we find an extended chiral spin liquid phase around
the point 0 =n/2 and h, =0, where the Hamiltonian reduces to
the three-spin term,

Heg, = Z Lijk: (3)
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Our numerical results indicate that the CSL is in fact stable
almost up to the Heisenberg point, namely for all 0>0.057. We
also establish an extended range of stability against other
perturbations, including the Zeeman field, an easy-axis spin
anisotropy in the Heisenberg term, a next-nearest neighbour
Heisenberg term, and the Dzyaloshinsky-Moriya interaction®>~37
induced by Rashba-type spin-orbit coupling for the fermions.
Although the aim of this paper is not to examine the nature of the
transitions out of the chiral spin liquid phase, for example, the
expected phase transition to the time-reversal symmetric spin
liquid of the Heisenberg antiferromagnet, these questions should
be addressed in future work.

In the following, we will use two complementary routes to
show that the ground state of equation (3) is indeed a chiral spin
liquid. First, we argue for this from a powerful perspective rooted
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Figure 1 | Hamiltonian and network model perspective. (a) Kagome lattice considered in this manuscript, where grey shading indicates the elementary
triangles. Arrows on the bonds indicate the direction induced by the magnetic flux ® enclosed in each triangle. (b) Visualization of the network-model
perspective on the chiral spin liquid phase arising from Hamiltonian (2). Consistent with a chiral topological phase, a collective edge state encircles the
whole systems. In this particular model, additional closed edges encircle each hexagon.

Two-channel Kondo physics

a
| X
Figure 2 | Network model perspective. (a) Sketch of a puddle of

topological phase replacing each triangle of three spins. (b) Behaviour of
two corner-sharing triangular puddles of the topological phase.

in the physics of network models of edge states akin to the
Chalker-Coddington network model for the integer quantum
Hall transition®®. We will then turn to powerful numerical tools
to unambiguously identify the universal properties of the chiral
spin liquid.

The key step of our first argument is to view each triangle of
spins as the seed of a chiral topological phase, a puddle encircled
by an edge state, as illustrated in Fig. 2a. The natural candidate for
the Ehase filling the puddle is the bosonic v=1/2 Laughlin
state®”, which is the simplest bosonic quantum Hall state known
to possess the SU(2) symmetry required by our construction. It is
also the state envisioned by Kalmeyer and Laughlin®. Forming a
lattice out of the elementary triangles, we should then consider a
situation with many individual puddles of this topological phase.
To see what collective state is formed, we have to understand how
two corner-sharing triangles of the Kagome lattice are joined.
This situation of edges meeting at the corner spin shared by two
triangles is an incarnation of two-channel Kondo physics*®*, for
which it is well-known that the edges will heal*>*° if the coupling
to the centre spin is symmetric, as illustrated in Fig. 2b and
discussed in more detail in the Methods section. Thus, the corner
spin has merged the two triangles to form a larger puddle
encircled by a single edge state, that is, to form a larger region of
the topological phase. We can repeat the above step (Fig. 2) for all
pairs of corner-sharing triangles of the Kagome lattice. The
system then forms one macroscopic, extended region of a single
topological phase with one edge state encircling its outer
boundary, as illustrated in Fig. 1b, and with closed loops
encircling the interior hexagons of the Kagome lattice. We thus
obtain a direct realization of the Kalmeyer-Laughlin state for a
CSL phase.
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Figure 3 | Exact diagonalization results. (a) Excitation energies on small
tori of type XT4-0 up to length 5. (b) Energy gap on a thin, long strip of
width 4 sites; dashed lines indicate the extrapolation to N— co. The two
different branches denote systems with an even (black) and odd (blue)
number of unit cells. (¢) Entanglement entropy at the centre of the same
system as (b) on a semi-logarithmic scale for even (black) and odd (blue)
number of unit cells; dashed lines indicate a fit. Both fits are consistent with
c=1. In all panels, N is the total number of lattice sites.

Numerical identification of the CSL. We now turn to a
numerical identification of the CSL at the chiral point 0 = /2 of
Hamiltonian (2) and in its vicinity by studying the three hallmark
properties of a chiral topological phase: the presence of a gapped
spectrum with a topological degeneracy on the torus, a gapless
edge state with a universal spectrum of low-energy excitations,
and anyonic bulk excitations. On a technical level, we resort to
exact diagonalization and density-matrix renormalization group
(DMRG) calculations to extract energy spectra, entanglement
spectra and modular matrices for various system configurations.
To label their diameter and boundary condition, we will use the
notation introduced in ref. 30; see also the Methods section.
We first demonstrate that the system has a finite gap in the
thermodynamic limit. To this end, we consider a sequence of
XT4-0 tori of length up to 5 unit cells, shown in Fig. 3a. For
systems with N>18 sites, there clearly is a low-lying excitation,
which can be attributed to a twofold near-degeneracy of the
ground state. All excitations above these near-degenerate ground
states are separated by a spectral gap of roughly A~ 0.05. Further
consistent evidence for the gap can be obtained from exact
diagonalization of a 36-site XT6-3 cluster and on XT4-2 clusters
of size up to 30 sites (not shown). As a further consistency check,
we can extract the gap for long, thin cylinders using DMRG.
Performing this for cylinders of type XC4-0 with up to 100 sites,

| 5:5137 | DOI: 10.1038/ncomms6137 | www.nature.com/naturecommunications 3

© 2014 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

we confirm that the triplet gap does not depend significantly on
the length of the system, ruling out the presence of gapless modes
propagating along the cylinder.

We conclude from this that the gap remains finite in the
thermodynamic limit. The qualitative agreement between the
spectral gap extracted for different system sizes and boundary
conditions is also a strong indication that the correlation length of
the system is short compared with the system sizes we are able to
study numerically. To further support this, we have calculated the
spin-spin and dimer-dimer correlation functions as well as an
upper bound on the asymptotic correlation length on infinite
cylinders. All of these indicate a correlation length on the order of
one unit cell. Taken together, this gives strong evidence that the
properties observed on small tori and quasi-one-dimensional
systems are representative of the two-dimensional phase in the
thermodynamic limit.

The observed twofold near-degeneracy is consistent with what
is expected for the CSL, namely a 28-fold ground-state degeneracy
on a manifold of genus g, which will be split by an amount that is
exponentially small in the system size. We also find two states
[W,> with very similar energy densities for infinite cylinders of
type XC8-4 and XC12-6. As explained in the Methods section, the
two states can be identified by their well-defined topological flux a
through the cylinder, which for the v=1/2 Laughlin state can be
the identity (a=1) or a semion (a=s).

Edge physics. Placing a chiral topological phase on a cylinder or
disk, a gapless chiral edge state emerges with a universal spectrum
governed by a conformal field theory®®. To observe this, we
consider the spectral gap of the system when placed on a thin,
long strip with a fixed width of four sites. In stark contrast
with the case of a thin long cylinder, the spin gap vanishes as
a/L + b/L?, where a and b are parameters of the fit (Fig. 3b). This
is a hallmark signature of a gapless edge mode. We can further
pinpoint the universality class of the edge theory by extracting its
central charge ¢ from the entanglement entropy. As shown in the
Fig. 3¢, we find good agreement with a value of c=1, which is
precisely that expected for the chiral SU(2); Wess-Zumino-
Witten conformal field theory describing the edge of a v=1/2
Laughlin state.

As an even more refined probe, we use the entanglement
spectrum, which reflects the same universal properties as the
physical edge spectrum*4~48, For each of the two ground states
|¥,> obtained for an infinite cylinder, the entanglement
spectrum, see Fig. 4, is consistent with the corresponding sector
of the chiral SU(2); Wess—Zumino-Witten conformal field
theory: the entanglement spectrum of |y ) displays precisely
the sequence of degeneracies of the tower of Kac-Moody
descendants of the identity primary field (1-1-2-3-5-...). These
are reproduced by counting the number of low-lying close-by
states in each tower grouped by momentum and spin quantum
numbers. Similarly, the entanglement spectrum of | ¥, > displays
the degeneracies of the spin-1/2 primary field and its descendants
(also 1-1-2-3-5-..). We note that in the identity sector, all
towers carry integer representations of the spin quantum
number, whereas in the semion sector they carry half-integer
representations. In both ground states, the levels can be grouped
into SU(2) multiplets.

Emergent anyons. The bulk of the chiral spin liquid phase has
anyonic excitations, referred to as semions. The topological
properties of these quasiparticles can be characterized through
their modular T and § matrices'?2. The T matrix contains the
central charge c and the self-statistics of the anyonic particles, that
is, the phase that is obtained when two particles of the same kind
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Figure 4 | Entanglement spectrum. Entanglement spectrum of the reduced
density matrix p, for one half of an infinite cylinder obtained for both
ground states ¥4 ) (@) and |¥s) (b). The entanglement energies shown
on the vertical axis, up to the global shift and rescaling, are given by
Eqo= —log(pgs), Where p,, are the eigenvalues of p,. The horizontal axis
shows the momentum in the transverse direction of the corresponding
eigenvectors of p,. Each tower is identified by its S* quantum number as
indicated by the blue label; we have offset the momentum of different
towers by 2x to improve clarity. The cylinder used here is XC12-6, and we
show results for 8 = 0.057x; qualitatively similar results are obtained for all
0.057<0<0.57.

are exchanged. The S matrix contains the mutual statistics of the
anyonic quasiparticles, their quantum dimensions (counting the
internal degrees of freedom of each particle) and the total
quantum dimension of the phase. More detailed definitions of
these quantities are given in the Methods summary.

For a fixed number of quasiparticles, only a finite number
of possible S and T matrices exist?>*°. For two types of
quasiparticles (as in the case of the v=1/2 bosonic Laughlin
state), only two choices are possible*”. Therefore, by numerically
calculating the S and T matrices and comparing them against the
two possibilities, we have fully identified the universal properties
of the topological phase. For the v=1/2 Laughlin state, the
modular matrices are

ooy f) sal ) o

For an XT8-4 torus of 48 sites at 0 =0.057, where the finite-
size corrections to this quantity are minimal, we obtain

T — ¢~ 1350988 1 0
- 0 j.e 000217 |”
5
. 1 {0.996 0.995 } ( )
V210996  —0.994¢  ©0-00197

This is in very good agreement with the T'and S matrices for the
v=1/2 Laughlin state given in equation (4) and provides the
strongest confirmation of the nature of the bulk topological
phase. The correct normalization of the first row or column of the
S matrix indicates that we have indeed obtained a full set of
ground states. We can also read off the total quantum dimension
D =1/Sy1 = v/2/0.996 of the E)hase, which determines the
topological entanglement entropy>">? that has been widely used
to identify topological phases. Furthermore, the central charge
c=0.988, as obtained from the T matrix, is in excellent agreement
with the prediction and the value extracted from the edge above.

Stability of the chiral spin liquid phase. To establish the region
in which the phase persists as 0 is tuned in the range 0€[0,7/2],
we first consider the ﬁdelity53 F(0)= (Y (0—e)|Y.(0+€))
shown in Fig. 5 (for the precise definition of this quantity for
infinite systems, see the Methods section). The fidelity remains
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Figure 5 | Excitation gaps. Singlet and triplet gaps as a function of 6 for an infinite XC8-4 cylinder. The triplet gap is a lower bound on the critical magnetic
field he; hence, the shaded region indicates the minimal stability of the phase in the 6-h, phase diagram.

near unity as 0 is tuned away from the chiral point 0 = 7/2, until
it suddenly drops for 6<0.057, indicating a transition in the
regime 0 < 0 <0.057. Further support for the extended stability of
the CSL is found in various other characteristics, including the
spectral gap, the modular matrices and the entanglement
spectrum. This is remarkable as it indicates that tuning away
from the Heisenberg model (0 =0) with a small critical chiral
coupling of (J,,/Jip)crit < tan(0.057) & 0.16 is sufficient to drive the
system into the chiral phase. We emphasize that this is merely an
upper bound for the location of the transition.

In experimental scenarios, a Zeeman magnetic field A, is likely
to be generated along with the orbital magnetic field that induces
the three-spin chiral term. The relative strength of the orbital
magnetic field and the Zeeman field is determined by the g-factor
and the ratio #/U. The energy gap in the triplet sector gives a
lower bound on the critical field strength h. up to which the CSL
phase is stable. The values for the triplet gap shown in Fig. 5
remain large all the way from the fully chiral point (0 =/2) to
the transition out of the CSL towards the Heisenberg point
(0=0).

In Fig. 5, we also show the singlet gap, that is, the gap to the
lowest excitation in the S=0 sector. As opposed to the triplet
gap, which appears to remain large across the transition, the
singlet gap decreases as the transition out of the CSL is
approached. Note that the gaps may be rounded off at the
transition by effects owing to either the finite diameter or the
finite bond dimension of the matrix-product state ansatz. We
point out, however, that a closing only of the singlet and not the
triplet gap would be consistent with the scenario for the transition
from the chiral spin liquid into a doubled semion phase (twisted
Z, topological phase) studied in ref. 54.

Discussion

We have taken an important step towards physically motivated
models for a chiral spin liquid in a frustrated spin system. We
believe that this will nucleate new research efforts both by
theorists and experimentalists. From a theoretical point of view,
studying the transition from the chiral spin liquid to the putative
time-reversal symmetric spin liquid in the Heisenberg model will
provide the unique opportunity to study a topological phase
transition in a realistic model, and may provide invaluable

insights into the physics of frustrated spins on the Kagome lattice.
For experimentalists, our work will provide a guide in searching
for realizations of bosonic fractional Quantum Hall physics in the
laboratory, be it in materials that have Kagome lattice structure
and form Mott insulators, or by engineering such systems in cold
atomic gases.

We have so far left unanswered the question of specific
parameters that are required to drive a material into the chiral
spin liquid phase. The relevant microscopic parameters are the
ratio /U that controls fluctuations around the Mott insulator, and
the orbital magnetic field ® that drives the chiral three-spin term,
see equation (1). The ratio J,/Jyp grows as either #/U or @ is
increased, and is to lowest order linear in both; however, in the
relevant regime close to the Mott transition, where the three-spin
term is expected to be strongest, corrections to this linear
dependence are likely to be important and inferring quantitative
conclusions about the relevant parameters in the Hubbard model
from our results for the effective spin model is thus challenging.
The upper bound on the critical coupling ratio J,/Jig given above
thus should only serve as a guide to more detailed simulations of
the original Hubbard model, which will allow for a reliable
quantitative estimation of the relevant regime of microscopic
parameters #/U and ®. Finally, the orbital magnetic field that can
be attained in the laboratory depends very much on material
parameters such as the spacing between magnetic moments,
which may be larger than the lattice spacing; giving quantitative
estimates along with an analysis of candidate materials thus goes
beyond the scope of this manuscript. A more detailed treatment
of these questions can be found in the Supplementary Note 2.

Another important question is that of how the chiral spin
liquid can be identified reliably in an experiment. The most
powerful signature of universal behaviour can be found in the
thermal transport properties®. Although harder to measure than
charge transport, which has been used as the most powerful probe
of fractional Quantum Hall physics in two-dimensional electron
gases, such thermal transport measurements have recently been
performed successfully both on 2d electron gases as well as
candidate spin liquid materials®®. A charge response should also
be present, but will not be universal and thus a less powerful
indicator of the chiral topological phase.

During completion of this work, we became aware of related
work in refs. 57,58.
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Figure 6 | Lattices. (a) Section of an XC8-4 cylinder. Links with the same
letters/numbers are identified. (b) XT4-0 torus with 24 sites.

Methods

Overview. In the following, we give a brief overview of the main methods used in
our work. Further technical details will be given further below.

We label the system sizes according to the scheme introduced in ref. 30. For
cylinders, the labels are XCm-n; here, X indicates the orientation of the cylinder,
m is the diameter of the cylinder in measured sites and n is the shift of the
boundary condition when wrapping the plane to a cylinder. Note that cylinders of
type XC(2n)-n are spanned by the basis vectors of the triangular lattice. For tori, we
use the labels XTm-n, where m and n have the same meaning as above. Two
examples are shown in Fig. 6.

We numerically study finite systems using exact diagonalization as well as the
DMRG method>*?. Although our exact diagonalization is limited to 36 sites,
DMRG allows us to study systems in a limit of long, thin cylinders and strips. Up to
M= 4,000 states are used in the finite-size DMRG calculations. Finite-size DMRG
calculations allow us to extract the spin gap as well as the entanglement entropies
for continuous blocks of sites, which we use to extract the central charge of the
system by fitting to the well-known formulas of ref. 61.

Furthermore, we use infinite-size DMRG with a translationally invariant matrix
product state ansatz of up to M = 4,096 states. This allows us to obtain a complete
set of ground states with well-defined anyonic flux, as first proposed in ref. 62. Here
the use of an infinite cylinder (as opposed to a finite cylinder with boundaries,
where there is no ground-state degeneracy) is key to obtain one ground state for
each anyonic charge, analogous to the torus. In this basis, we can extract the
entanglement spectrum as well as the T and S matrices. Reference 62 details the
non-trivial step of resolving the entanglement spectrum by transverse momentum.

The T and S matrices are defined through a world-line diagram for anyonic
particles as (see for example, refs. 12,63)

CO

a a

;2
Ty = 677%660’1@(1 O, =

(D

a b

Here D is the total quantum dimension of the phase, and d, is the quantum
dimension of a quasi-particle of topological charge a. These matrices can be related
to generators of the modular group on the torus, and fulfill the conditions
(ST)®> = $2 and $*=1. The T-matrix is proportional to the twist factors ®,, which
contain the self-statistics of the excitations, that is, the phase that is obtained when
two particles of the same kind are exchanged once; we have @ =1. The T matrix
has a prefactor e ~¥20/29¢ — Ty where ¢ is the central charge of the anyon model.
The S-matrix contains the mutual statistics, that is, the statistics obtained when
particles of general types a, b are braided around each other. The first row of the
S matrix contains the quantum dimensions d, of the quasiparticles.
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Figure 7 | Finite- vs infinite-size behaviour of spectral gaps. Comparison
of singlet and triplet gaps obtained for infinite cylinders (XC8-4 and XC4-2)
as well as for finite tori using DMRG and exact diagonalization of up to

N =36 sites. All infinite-size results have been extrapolated to the M — o
limit.

To numerically obtain these matrices, first a quasi-orthonormal basis {| %I »}
on a torus of 3 X L x L sites with well-defined topological flux a through the torus
and a /3 rotational symmetry must be obtained. As pointed out in ref. 64, the
modular matrices T and S of the emergent anyon model are related to the matrix
elements of a 7/3 rotation R, through the equation

(¥ | Rys | ¥}) = (DTS 'DH),,. ()

Here D is a diagonal matrix containing only complex phases; it accounts for the
freedom in choosing the phases of the vectors [P ). In ref. 62, it was shown how
to build the basis |‘I’L°r > from an matrix product state (MPS) representation for
[P and how to extract both T and S from ¢ W|R,3|¥i" >. Note that the
matrix T is referred to as U in the reference.

Finite-size DMRG. To study the finite cylinders and strips discussed in the main
text that are beyond the system size amenable to exact diagonalization, we use the
DMRG method**%0. Although for many years limited to one-dimensional systems
by its exponential scaling in the width of quasi-one-dimensional systems, recent
years have seen a surge in applications of large-scale DMRG calculations to 2d
systems®. A key point is that although it scales exponentially in the width of the
system, the scaling is polynomial in the length, allowing it to go much beyond exact
diagonalization if boundary conditions and the mapping to a one-dimensional
system are chosen appropriately. DMRG is based on a variational ansatz that can
be systematically improved by increasing the number M of states kept, where the
computational cost grows as O(M?3). For the calculations shown in Fig. 3 of the
main text, we use up to M =4000 states.

From DMRG, we can easily extract the entanglement entropy for a contiguous
block of sites at the end of an open system. This allows us to calculate the central
charge of a gapless quasi-one-dimensional system by performing a fit to the well-
known results of refs. 61,66, which for the entanglement entropy of a contiguous
block of n=N/2 sites in an open 1d system of N sites is

S(N) = So + glog (ZN). 7)

T

Infinite-size DMRG. We use infinite-size DMRG to efficiently obtain ground
states, parametrized through translationally invariant matrix-product states, on
infinite cylinders up to XC12-6 and with up to M = 4,096 states, exploiting a U(1)
symmetry of the system. The calculation of the entanglement spectrum as well as
the modular matrices has been explained in the Methods summary; below, we
provide additional detail on numerical parameters used. We also discuss how to
extract the fidelity and the bulk gaps from such an infinite ansatz.

The approach to extracting the T and S matrices outlined in the Methods
summary requires the calculation of the matrix elements of {W!°|R,;s|¥{°"),
where R,3 is a 60° rotation. The cost of an exact calculation of this matrix scales as
a very large power in the bond dimension M, and in practice, we have to resort to
sampling techniques to obtain an approximate evaluation. The results of
equation (5) of the main text were obtained using 2 x 10> samples over spin
configurations in the $% basis using a Markov chain Monte-Carlo update scheme.
We have checked that the values for T and S are converged to within 10 3.
Therefore, the main source of the deviation between the numerically obtained
results and the exact matrices is due to finite size effects.
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Although the calculation of the fidelity
F(0) = [(Ya(0 =) | ¥a(0+ ) (®)

is straightforward in the case of finite-size DMRG and exact diagonalization, more
care must be taken in the case of infinite-size DMRG as all states are either equal or
orthogonal in the thermodynamic limit. In the case of translationally invariant
infinite MPS, one can consider the spectrum of the transfer operator of the product
of two normalized infinite MPS. Given the eigenvalue with largest absolute value
|| €[0,1] of this transfer operator, the overlap of the states for N sites is |A[N.
Clearly, as N— o0, 2N—0 or 1. Therefore, instead of the overlap we quote directly
the absolute value of the eigenvalue ||, which shows the same behaviour as the
fidelity for finite systems. We use ¢ = 0.025.

In standard DMRG calculations, the triplet gap is easily available by changing
the total spin quantum number of the target state, which is enforced exactly. The
singlet gap can be obtained by first converging the ground state of the system and
then optimizing a second state under the constraint of orthogonality against the
ground state. For infinite-size DMRG calculations, however, neither of these
methods are applicable, and we therefore must resort to a different approach. For
this manuscript, we choose to approximately extract the gaps from the spectrum of
an effective local Hamiltonian obtained by contracting a network of the MPS with
the matrix-product operator representation of the Hamiltonian everywhere except
on one bond.

To validate our approach, we compare the energy gaps extracted from infinite
cylinders to small tori of the same diameter. Note that a comparison against finite-
size DMRG on long cylinders is hampered by the gapless edge that emerges in that
topology. In Fig. 7, we compare infinite XC4-2 cylinders against an XT4-2 torus
with 30 sites, as well as infinite XC8-4 cylinders against an XT6-3 torus with
36 sites. The energies for the tori are mostly obtained with DMRG using up to
M =14,000 states; for both sizes, we have performed exact diagonalization
calculations at selected values of 0 to confirm the ground-state energies obtained
from DMRG are within 1% error of the exact energies. The good agreement
between the two methods clearly validates the approach used. We have also verified
for various values of 0 that for XC8-4, the gaps above the two ground states
corresponding to different topological sectors are comparable. We therefore only
show results for infinite cylinders in the main text.

Network model. We now revisit the network model perspective discussed in the
main text, and provide additional detail on how the healing of the edge states
surrounding two corner-sharing triangles that share one spin can be understood in
terms of two-channel Kondo physics.

If we envision the puddles to be very large, they would carry the edge state on
each side and the corner would look as shown in Fig. 8Ia. The pair of edge states on
the upper triangle is known!®3 to be described by the same theory as the right-
and left-movers of a semi-infinite uniform spin-1/2 Heisenberg chain, and
analogously for the lower pair of edge states. The spin at the corner then appears as
the centre spin of an infinite chain (Fig. 8Ib,Ic). It is well known that the infinite
chain will heal if the centre spin is coupled to the two semi-infinite chains with
equal strength?43, Then, the right- and left-movers will extend throughout the
entire, infinite system (Fig. 8Id). The effect on the corner spin is summarized in
Fig. 811, where the situation shown in Fig. 8Ila corresponds to Fig. 8Ia, whereas
Fig. 8IId corresponds to Fig. 8Id. As is evident from Fig. 8IId, the corner spin has
merged the two triangles to form a larger puddle encircled by a single edge state,
that is, to form a larger region of the topological phase.

We can illustrate the validitiy of the above network model picture by
considering the different situation where the spins are replaced by Majorana
fermion zero modes. The resulting network model will describe a different

a b c d
\ ’
G
= == ° = 1) — Q
7 Q \
a d
Two-channel Kondo physics

Figure 8 | Network model construction. (I) lllustration of the behaviour of
the edge states at a corner shared by two puddles. (II) Behaviour of two
corner-sharing triangular puddles of the topological phase.

topological phase. Specifically, replace the spin chirality term on each triangle by a
chiral hopping term 75 = i(7;7; + 7,7k + 7«7;)> which also has the effect of
introducing the notion of a chirality on each triangle. This model, which is
quadratic in fermionic operators, can be diagonalized straightforwardly. As the
Kagome lattice is obtained as a triangular lattice of three-site unit cells, we obtain
three energy bands E,(k.k,), « =1,2,3. We observe that all three bands are
separated by a gap from each other, and the central band E, is dispersionless, that
is, Ey(k-k,) = 0. Noting that the number of states in this band coincides with the
number of hexagons in the system, we identify these zero-energy states as the non-
interacting edge states encircling those hexagons of the Kagome lattice (shown in
Fig. 1b) in which a fermion zero mode resides. We calculate the Chern number C
(ref. 67) using the real-space method of refs. 68 and find that C of the top and
bottom band is C= % 1, that is, that the model is in a topological phase; this was
previously observed in ref. 69.
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