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Engineering polar discontinuities in honeycomb
lattices
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Unprecedented and fascinating phenomena have been recently observed at oxide interfaces

between centrosymmetric cubic materials, where polar discontinuities can give rise to

polarization charges and electric fields that drive a metal–insulator transition and the

appearance of a two-dimensional electron gas. Lower-dimensional analogues are possible,

and honeycomb lattices offer a fertile playground, thanks to their versatility and the extensive

ongoing experimental efforts in graphene and related materials. Here we suggest different

realistic pathways to engineer polar discontinuities in honeycomb lattices and support these

suggestions with extensive first-principles calculations. Several approaches are discussed,

based on (i) nanoribbons, where a polar discontinuity against the vacuum emerges, and

(ii) functionalizations, where covalent ligands are used to engineer polar discontinuities by

selective or total functionalization of the parent systems. All the cases considered have the

potential to deliver innovative applications in ultra-thin and flexible solar-energy devices and

in micro- and nano-electronics.
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C
ombining together different materials rarely results in a
simple ‘arithmetic sum’ of their properties. Typically, the
composite system displays properties that are not present

in its components, giving rise to novel and unexpected behaviour.
This is the case for oxide interfaces, which have been recently
attracting considerable attention, both experimentally and
theoretically1,2. Among these, a dominant role is played by
heterostructures of strontium titanate (SrTiO3 or STO) and
lanthanum aluminate (LaAlO3 or LAO). Both LAO and STO are
insulators; nevertheless, when brought together, a two-
dimensional electron gas (2DEG) with high mobility appears at
their interface3. This 2DEG is host to a rich variety of
phenomena, ranging from superconductivity4 to magnetism5

(and even the unprecedented combination of the two6,7), with
many promising device applications. The most intuitive picture to
explain the existence of the 2DEG follows from dielectric
considerations on the bulk properties of the constituent
compounds8. LAO and STO have an identical cubic
centrosymmetric crystal structure; therefore, classically, the
macroscopic polarization of each material should be zero,
thanks to inversion symmetry. However, in the framework of
the Modern Theory of Polarization9, polarization cannot be
represented by a single vector, but as a lattice of vectors with the
same periodicity of the crystal lattice and satisfying all the
symmetries of the crystal. For cubic systems that display inversion
symmetry, this condition allows two different polarization
lattices, one containing the zero vector and another shifted by
half of the cube diagonal. STO belongs to the first class, while
LAO to the second, and as a result, a polar discontinuity appears
when LAO is epitaxially grown on top of STO and a polarization
charge builds up at the interface8. This discontinuity creates an
electric field inside LAO that can in turn induce a metal–insulator
transition with a transfer of free charges from the surface of LAO
to the STO/LAO interface8,10. This transition has been found
experimentally to occur at LAO thicknesses of three to four
layers11, in agreement with theoretical calculations8.

Such concepts could be extended to lower dimensions, with
one-dimensional (1D) channels of free carriers appearing at the
boundary between two-dimensional (2D) insulating materials,
provided that the ‘bulk’ polarizations of the 2D crystals involved
were different. In this respect, non-centrosymmetric honeycomb
lattices offer a very promising playground, owing to the quantized
and topological nature of their bulk polarization12,13. A
suggestion in this direction has been put forward in ref. 14,
where the authors have considered honeycomb crystals of
aluminum nitride, silicon carbide (SiC) and zinc oxide (ZnO).
First-principles simulations have confirmed the existence of a
polar discontinuity at the interface between two such crystals,
with free charges accumulating in 1D channels along the
interfaces14. In the thermodynamic limit, the linear charge
density lF of free carriers perfectly balances the polarization
charge density lP and it is thus determined solely by the bulk
properties of the materials involved and by the orientation of the
interface through15

lF ¼ ðP2 �P1Þ � n̂12 ¼ � lP: ð1Þ

Here P1,2 are the bulk polarizations of the parent crystals and
n̂12 is a unit vector normal to the interface and pointing from 1 to
2. Although the suggestion for an analogue in 2D of the LAO/
STO heterostructure is very promising, a practical concern
hinders the feasibility of the setup suggested in ref. 14. Indeed,
although ZnO and SiC have been synthesized as few-layer
hexagonal structures16,17, they have not been isolated as
monolayers, and the realization of in-plane heterostructures
seems even more demanding.

In this study we outline instead experimentally viable
approaches to the realization of polar discontinuities at the
interface between honeycomb structures, giving rise to 1D wires
of electrons and holes, and opening the possibility of manifold
applications.

First, we note that vacuum can be interpreted as an insulator
with vanishing polarization. Thus, in a nanoribbon made out of
any polar lattice, polarization charges will appear as a
consequence of the polar discontinuity at its edges (that is, at
the interface with vacuum). Second, we argue that covalent
functionalizations (for instance, with hydrogen or fluorine) can
change the polarization of the parent crystal. Partial functiona-
lization of a 2D sheet thus introduces a discontinuity in the
electric polarization at the boundary between functionalized and
pristine regions. Alternatively, full functionalization of the
recently reported18–22 lateral heterostructures between graphene
and boron nitride (BN) can also be pursued. We illustrate in the
following all these strategies in more detail, starting from those
that are conceptually simpler and highlighting for each the
challenge or simplicity of their experimental realization. Last, we
support these suggestions with the results of extensive first-
principles numerical simulations.

Results
Nanoribbons of sp materials. As a first suggestion, we consider
the case of pristine nanoribbons (see Fig. 1a) where the dis-
continuity has to be considered with vacuum. According to the
interface theorem15, the polarization charge density is related to
the bulk formal polarization9, which, for non-centrosymmetric
honeycomb crystals, is constrained by symmetry to have
quantized values and to point along one of the equivalent
armchair directions12–14:

P ¼ e
�
ða1 þ 2a2Þ

m
3
þ 2e

�
R: ð2Þ

In equation (2), a1 and a2 are the primitive lattice vectors
(see Fig. 2), R is a generic Bravais lattice vector, � is the area
of a unit cell and mA{0,1,2}. The value of m can be simply
obtained once the ground state of the system is expressed in terms
of a set of maximally localized Wannier functions23. If desired,
standard choices for the gauge vector R in equation (2) can be
made by assigning each Wannier function to a given ion
according to the crystal termination24. Then, the electronic
contribution to P can be expressed as a sum over point-like
charges located at the Wannier centres hrij and the total formal
polarization reads

P ¼ e
�

XN
a¼1

Zasa � 2
XNel=2

j¼1

hrij

 !
: ð3Þ

Here, Za and sa are the charges and positions of the N ions
in the unit cell and Nel is the number of electrons. Let us
first consider heteroatomic honeycomb lattices in which the
electronic properties are determined by s and p orbitals, such as
BN (monolayer SiC and ZnO, if realized, would also belong
to this class). In Fig. 2a, we show the Wannier function centres
of such systems, and by using equation (3) it is easy to show that
the bulk formal polarization can be non-zero (see also
Supplementary Table 1). A finite polarization charge thus appears
at the edges of a nanoribbon made out of one of these honeycomb
crystals, provided that the edge is not parallel to P (ref. 15). We
have verified that indeed the polarization charge vanishes for
armchair nanoribbons while it is maximal for perfect zigzag
nanoribbons.

Looking at, for example, the ideal case of zigzag edges, the
polarization-induced electric field shifts the energy bands of the
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ribbon linearly in space, reducing the effective gap of the system.
By increasing the width of the nanoribbon, a metal–insulator
transition occurs as the top of the valence band reaches in energy
the bottom of the conduction band. As shown in Fig. 1a, free
carriers localize close to the edges of the nanoribbon with
different character (electron or hole) on opposite sides. The
density of free carriers at each edge increases with the width of
the nanoribbon and, asymptotically, perfectly screens the
polarization charge in agreement with equation (1). It is thus
possible to tune such nanoribbons from a regime of small widths
(few nanometres) in which there is a sizable electric field and
negligible density of free carriers to an opposite regime for large
widths (tens of nanometres or more) of vanishing electric fields
but high metallicity.

Metallicity of heteroatomic zigzag nanoribbons has been
investigated theoretically in recent years25–27, and it has been
pointed out that such 1D metallic channels can undergo magnetic
transitions and eventually become half-metallic. However, no
connection with the intrinsic polarization of the parent materials
and with the existence of finite electric fields28 has been drawn
yet. As we shall discuss later, this is actually one of the key
features that make some of these systems very promising for
solar-energy applications.

It is important to mention that depending on the edge
termination, additional charges might appear at the boundaries.
For instance, by terminating edge bonds with hydrogen, an
additional ±e charge per unit length is introduced at opposite
edges. Therefore, any specific termination does not neutralize the
total charge at the edge, as termination effects can change it only
by an integer number of electrons per unit length, while the
polarization charge is typically a non-integer fraction of an
electron per unit length. The only relevant exceptions are pristine
III–V ribbons (that is, exactly BN) for which m¼ 0, so that
termination-induced charges might completely screen polariza-
tion effects. On the other hand, functionalized BN ribbons,
discussed later, would be resilient against such mechanism. In
addition, even in the case with m¼ 0, by applying strain it would
be possible to tune the polarization charge while leaving
unaffected the termination effects, thus restoring a finite electric
field (see also the Supplementary Note 1 for a detailed description
of termination effects).

From an experimental point of view, the main challenge
would be to control the edge structure and chemistry. On the
other hand, recent progress29–31 in atomistic control over
the edge structure of graphene nanoribbons has been quite
spectacular and could be foreseeably extended to other
honeycomb crystals.

Nanoribbons of transition metal dichalcogenides. In addition
to sp materials, other honeycomb lattices can support a finite
bulk polarization, starting from transition metal dichalcogenides
(MX2). Although these materials have been extensively studied in
the last few years32,33, their bulk formal polarization has not been
discussed so far. In such systems, one sublattice is occupied by a
transition metal M while the other hosts two chalcogens X
displaced in the vertical direction on opposite sides with respect
to the plane of M atoms. In Fig. 2c, we show the Wannier
function centres for the top seven valence bands when the
transition metal belongs to group VI (M¼Mo, W). Six centres lie
close to the S atoms, which play the role of ‘anions’ (see also
Supplementary Note 2), while the last one is located at the centre
of the hexagonal cell and is associated with the Wannier function
displayed in Fig. 2d. As a consequence, group VI transition
metal dichalcogenides such as MoS2 have a non-trivial (that is,
ma0) formal polarization and their nanoribbons support a
polar discontinuity, in exact analogy with what happens for sp
materials. In addition, we mention that a polar discontinuity
occurs also across inversion domain boundaries34–36 that lie
along zigzag directions and separate crystallites with opposite
polarizations. Thus, transition metal dichalcogenides offer a
broad choice in materials, chemistry and electronic structure,
and represent one of the most promising experimental avenues to
pursue. Indeed, polarization effects might be at the origin of
metallic states already observed at inversion domain boundaries
in MoSe2 (ref. 36) and at the edge of MoS2 nanoclusters37.

Selective functionalization. As a second different route to engi-
neer polar discontinuities we suggest covalent atomic functiona-
lizations, such as those with hydrogen or fluorine. We assume full
coverage and we consider for simplicity a chair conformation,
corresponding to functionalizations in alternating positions above

Figure 1 | Possible realizations of polar discontinuities in honeycomb lattices. (a) Zig-zag nanoribbon from a 2D heteronuclear honeycomb lattice (in this

case, boron nitride with unsaturated edges), where the ‘interface’ is with vacuum (i.e., an insulator with vanishing polarization). (b) Selective covalent

functionalization (for example, with hydrogen) of a parent honeycomb lattice (here, boron nitride). (c) Full functionalization of a heterostructure of

graphene and boron nitride. (d) Selective covalent functionalization of a nanotube. In all panels, the real-space distribution of free-carrier density is plotted

in red (blue) for electrons (holes).
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and below the plane of the parent honeycomb lattice (see
Supplementary Note 3 for a discussion on the different con-
formations of functionalized BN and their thermodynamic
stability). In Fig. 2b, we show the Wannier function centres for a
typical functionalized honeycomb lattice. We report results only
for the case of hydrogen, as the case of fluorine is completely
analogous. It is easy to verify that these covalent functionaliza-
tions change the value of m in equation (2) by one unit with
respect to the parent material. As a consequence, we first note
that functionalized nanoribbons would still support a polar dis-
continuity at the edges (and in particular III–V materials become
less sensitive to termination-induced charges as m changes from 0
to 1, see Supplementary Table 1). Second, selective functionali-
zation of a parent honeycomb lattice would create an interface
between pristine and functionalized regions, introducing a polar
discontinuity in the system. This situation is depicted in Fig. 1b,
where we consider perfect zigzag interfaces (i.e., those giving rise

to the largest polar discontinuity) between alternating stripes of
pure and hydrogenated BN, similar to what happens in graphene
‘nanoroads’38. As expected, free carriers localize at opposite
interfaces.

This case will be discussed at length in the last part of the
paper, but we point out that the two regions (pristine and
functionalized) remain obviously aligned with respect to each
other and are close to a perfect lattice match (for example, for BN:
aBN¼ 2.51Å and aBNH2 ¼ 2:59 Å). The experimental challenge is
thus shifted to the selective functionalization of the parent crystal.
To achieve this result, it is likely to be that techniques adopted for
the functionalization of graphene39,40 could be generalized to
heteroatomic honeycomb crystals. Indeed, full coverage, double-
sided hydrogenation of graphene (that is, graphane) has been
realized in suspended samples by exposure to low-temperature
hydrogen plasmas41. As far as fluorographene is concerned, a 1:1
carbon to fluorine ratio is achievable by functionalization with
atomic fluorine formed by decomposition of xenon
difluoride42,43. By combining this technique with scanning
probe lithography, a pristine graphene nanoribbon has been
isolated within a matrix of partially fluorinated graphene44. In
addition, encouraging results have been already reported on the
partial fluorination of BN nanotubes45 and nanosheets46.

Functionalized graphene/BN interfaces. In view of the well-
established experimental technology in growing single-layer gra-
phene and BN, and the recent achievements18–22 in obtaining
sharp graphene/BN lateral heterostructures, it is of great interest to
exploit these materials to engineer a polar discontinuity. Although
pristine graphene is not an insulator and does not support a bulk
polarization, its functionalized forms (graphane41 and fluoro-
graphene42,43) are insulators and their formal polarization is
constrained by symmetry to be zero12,13. Moreover, we have seen
above that functionalized BN acquires a non-trivial bulk
polarization (m¼ 1). Thus, full functionalization of existing
planar graphene/BN heterostructures18–22 will lead to the
emergence of a polar discontinuity and a finite density of free
carriers at the interfaces, as shown in Fig. 1c (we stress that this
mechanism is completely different from the one that leads to
metallicity in unfunctionalized graphene/BN interfaces47). In
addition, the intrinsic preference of these interfaces to grow
along a zigzag direction18,21 provides the optimal orientation to
maximize the polar discontinuitiy.

Functionalized nanotubes. Although this paper is mainly
devoted to 2D systems, we would like to illustrate what happens
when these honeycomb lattices are rolled up in nanotubes and a
finite polarization along the axis arises depending on the chirality
of the nanotube48. Focusing on zigzag nanotubes, by selective
functionalization one can introduce a polar discontinuity along
the tube, as illustrated in Fig. 1d. Similar to what happens in 2D, a
finite polarization charge builds up at the interfaces, creating an
electric field that induces a charge reconstruction, with the
appearance of electron- and hole-rich quantum dots. The charge
density localized in these quantum dots is shown in Fig. 1d in the
case of a (8,0) BN nanotube with selective hydrogen
functionalization. The reduced dimensionality suggests that the
effects of Coulomb interactions might be relevant for the
electronic-structure properties of such quantum dots, similar to
what happens in carbon-nanotube quantum dots49. The
interaction-driven phenomena that might arise would then be
interesting both from a fundamental and practical point of view,
with particular emphasis towards quantum information
applications50. In addition, even in the regime of small system
sizes (when no charge is transferred in the quantum dots), the

a2

a1

Cation Anion Wannier center

Figure 2 | Maximally localized Wannier functions in non-

centrosymmetric honeycomb lattices. (a) Crystal structure of a typical

heteronuclear honeycomb lattice. Each unit cell, identified by two lattice

vectors a1 and a2, includes two inequivalent lattice sites, occupied by a

cation-like and an anion-like atom, respectively. In sp materials, the upper

valence bands can be mapped into four doubly degenerate Wannier

functions centred around the anion. When the parent crystal is

functionalized with hydrogen in a chair configuration the effect is twofold:

(i) the effective ionic charge at each lattice site is increased by one unit and

(ii) an additional Wannier function has to be included to accommodate the

extra electrons. As shown in b, the in-plane projection of the corresponding

centre is on top of the cation, while the other four Wannier functions

remain localized around the anion, as in panel a. (c) Wannier function

centres for group VI transition metal dichalcogenides (for example, MoS2,

WSe2 and so on). Six doubly degenerate Wannier functions are located

around the chalcogens, while another one is located in the middle of the

hexagonal cell. (d) Isosurface plot for the latter Wannier function in MoS2
(Mo atoms in black and S atoms in yellow).
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magnitude of the electric field in each segment might be easily
tuned by varying the diameter of the nanotube and the distance
between the interfaces. As we shall discuss in the following, this
has significant consequences in solar-energy applications.

First-principles simulations. To support the general arguments
presented above, we now use detailed, large-scale first-principles
simulations to investigate a paradigmatic case study. For defi-
niteness, we focus on selective hydrogen functionalization of BN
(that we label as BNH2), even though qualitatively similar results
can be obtained using different parent materials and functional
atoms, or any of the alternative approaches discussed above (and
summarized in Table 1).

We simulate interfaces between pristine and functionalized BN
within periodic boundary conditions, considering superlattices
obtained by alternating BN and BNH2 regions. As a consequence,
two opposite interfaces are present within a simulation supercell,
which is identified by two primitive lattice vectors. The first one
defines the periodicity along the interface and can be determined
by specifying the number of zigzag and armchair sections present,
as shown in Fig. 3b: s1 ¼ ‘aZ þ paA (‘ and p are positive coprime
integers while aZ¼ a2 and aA¼ a1þ 2a2 are translation vectors
along the zigzag and armchair direction, respectively). The second
lattice vector s2¼ 2qa1 defines the periodicity of the superlattice
in terms of the number of unit-cell repetitions q that define the
width of each region. It is important to mention that the lattice
vector s1 alone is not sufficient to uniquely define the interface, as
one still needs to specify the shape of the boundary (that is, which
lattice sites should be assigned to each side of the interface). For
simplicity we consider only interfaces that minimize the number
of boundary atoms and bonds51. Different choices would affect
only quantitatively the results, through the appearance of
additional bound charges at the interface.

We first focus on the case of a perfect zigzag interface (p¼ 0),
when we have a finite polarization charge density with opposite
signs at each interface. These polarization charges create an
electric field inside both BN and BNH2, as can be clearly seen in
Fig. 3a examining the finite slope of the macroscopic and planar
average52 of the electrostatic potential energy (solid line). In
Fig. 3, we also show the average local density of states as a
function of energy and position along the direction orthogonal to
the interfaces. As a consequence of the electric field, the electronic
bands shift linearly as a function of position. For sufficiently large
widths (as in Fig. 3a), this leads to an energy overlap between the
conduction and valence bands of the two interfaces, and to a
charge redistribution with the creation of electron and hole
pockets10,14. The Fermi energy (dashed line) intersects both the
top of the valence band and the bottom of the conduction band so
that the system has become metallic, as expected. Figure 1b shows
the excess charge density obtained by integrating the local density
of states to take into account the partial depletion of the valence
bands (for holes) and the filling of the conduction bands (for
electrons). Both figures make it clear that excess electrons and

holes are separated in space and reside on opposite interfaces,
partially screening the polarization charges. In Fig. 3c, we report
the density of free carriers for different widths of the ribbons (red
circles). As the periodicity of the superlattice increases, the charge
of free electrons and holes also increases as a result of a larger
overlap between conduction and valence bands. As the free
charge has an opposite sign with respect to the polarization
charge, the overall charge density at each interface decreases
together with the electric field in both materials (blue triangles in
Fig. 3c). Asymptotically, the free charge completely balances the
polarization charge according to equation (1) and the electric
fields vanish, thus preventing a polar catastrophe8. Indeed, in
Fig. 3c the density of free carriers approaches asymptotically the
polarization charge obtained from the bulk formal polarizations
of BN and BNH2 (black dashed line). If the two materials were
perfectly lattice-matched, we would have, from the discussion on
Wannier functions above (equations (1) and (2)), |lP|¼ e/(3a).
Owing to the piezoelectric properties of these materials, lP is
slightly larger than e=ð3�aÞ as a result of the finite strain necessary
to reach a common equilibrium lattice constant �a along the
interface14.

Let us now consider an arbitrary interface orientation that can
be identified by the angle y between the lattice vector along the
interface, s1, and the pure zigzag direction, aZ, so that

cosy ¼ s1 � aZ
j s1 j jaZ j

¼ 3pþ 2‘

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p2 þ 3p‘þ ‘2

p : ð4Þ

According to equations (1) and (2), the polarization charge
density gradually decreases down to zero as y goes from zero
(pure zigzag, p¼ 0) to p/6 (pure armchair, ‘ ¼ 0). In particular,
neglecting for simplicity piezoelectric effects, we find

jlP j ¼
2e
3�a

sin
p
6
� y

� �
: ð5Þ

Thus, we expect that the appearance of finite electric fields and
the presence of a metal–insulator transition are not restricted to
the case y¼ 0, although their effects are depressed as we approach
y¼p/6. Figure 3d shows the free charge density and the electric
fields in BN and BNH2 for several values of y corresponding to
different combinations of ‘ and p. All simulations have been
performed keeping fixed the periodicity of the superlattice
(q¼ 7). Despite the small width of the system, the free charge
density survives over a wide range of angles, thus suggesting
robustness with respect to the interface orientation. In addition,
by incrementing the periodicity of the superlattice, the free charge
density could be further increased and asymptotically reach the
dashed line representing the polarization charge in equation (5),
as it happens in the y¼ 0 case shown in Fig. 3c.

Discussion
We have presented different approaches to obtain polar
discontinuities in honeycomb lattices, supporting these predic-
tions with first-principles simulations. First, we highlight that a

Table 1 | Methods and materials to engineer polar discontinuities.

Methods Materials

Nanoribbons BN, functionalized BN, transition metal dichalcogenides (MoS2,...)
Selective functionalization BN
Full functionalization Graphene/BN heterostructures
Inversion domain boundaries Transition metal dichalcogenides

BN, boron nitride.
Possible methods and materials to engineer a polar discontinuity in honeycomb lattices. The list of materials could be greatly enlarged, but we have intentionally restricted it to current experimentally
relevant materials. We remark that the polar discontinuity is largest for zigzag interfaces or edges, while it is zero for armchair ones.
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finite-width nanoribbon introduces a polar discontinuity with
vacuum if the parent material supports a finite formal polariza-
tion. This happens for heteroatomic honeycomb crystals such as
BN and its functionalized derivatives, and for transition metal
dichalcogenides, such as molybdenum disulfide. The existence
of a polar discontinuity at the edges elucidates why metallicity
can arise in honeycomb nanoribbons25–27 or at inversion
domain boundaries36. Second, we show that covalent atomic
functionalizations, for example, with hydrogen or fluorine, can
change the bulk polarization of a honeycomb lattice. Thus,
covalent functionalizations can be used to engineer polar
discontinuities in 2D materials or 1D nanotubes simply by
introducing interfaces between functionalized and pristine
sections. In addition, as covalent functionalizations open a gap
in graphene, they can be exploited to engineer polar
discontinuities in existing graphene/BN interfaces18–22, without
the need for selective functionalization.

We believe that engineering polar discontinuities in honey-
comb lattices will provide a novel platform for manifold
applications. First, 1D channels of free carriers along the
interfaces could be exploited for circuitry in new-generation
ultra-thin and flexible electronics. Indeed, current signals between

different units of a device could be transmitted along such 1D
channels, surrounded by insulating bulk materials, exceeding the
limits of lithography in current electronic devices. Moreover, the
reduced dimensionality of the channels gives rise to magnetic
instabilities14 that could be useful in spintronics applications.
Second, and even more compelling, we envision a fruitful
employment in solar-energy technology for the realization of
light-harvesting devices. Indeed, the ‘bulk’ interior of these
systems is insulating and is an active region where photons can be
absorbed, creating electron–hole pairs. For narrow systems, the
polarization charges at the interfaces or edges are not
compensated and thus naturally create an electric field (we note
in passing that this is different from what has been done in
recent photovoltaic devices based on transition metal
dichalcogenides53–56, where metallic gates have been employed
to create a p–n junction). Once the electron–hole pair is created,
the electric field separates the electron and the hole, and guides
them towards opposite interfaces, where the 1D wires naturally
collect and transport them. In addition, the electric field shifts in
space the conduction and valence band extrema, and creates a
variable effective gap depending on the spatial extension of the
exciton, with an ensuing tunability of the cell efficiency.
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Figure 3 | Numerical results for BN–BNH2 interfaces. (a) Planar average of the local density of states as a function of energy and position along an

axis orthogonal to the interfaces, for a q¼ 12 BN–BNH2 superlattice with p¼0 (zigzag interface), shown on top. The dashed line marks the Fermi energy,

while the solid line denotes the planar average of the electrostatic potential energy. (b) Schematic representation of an arbitrary interface orientation. The
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left axis) at each zigzag interface as a function of superlattice periodicity, expressed in units of e � �a� 1, where �a is the equilibrium lattice constant along the

interface. The dashed line shows the asymptotic value given by equation (1), and up (down) blue triangles denote the residual average electric fields (right

axis) inside BN (BNH2). (d) Same as in c but as a function of the interface orientation angle y for a q¼ 7 superlattice. The dashed line shows instead the

free charge density in the limit q-N given by equation (5). In c and d, the scales of the left and right axes map charge densities and electric fields

exactly into each other, so that, for example, a density read on the left axis will give the corresponding field on the right axis.
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Furthermore, several systems with different widths and materials
composition could be integrated into a single device to optimize
the range of photon frequencies that can be absorbed.

Methods
First-principles simulations. All first-principles calculations reported here are
carried out within density-functional theory by using the PWscf code of the
Quantum-ESPRESSO distribution57 with the Perdew–Burke–Ernzerhof exchange-
correlation functional58. An ultrasoft pseudopotential description59 of the ion–
electron interactions is adopted. Energy cutoffs are set to 60 and 300Ry,
respectively, for the electronic wavefunctions and the charge density in the case of
BN/BNH2 superlattices. For zigzag interfaces, a 1� 6� 1 shifted Monkhorst–Pack
grid is used to sample the Brillouin zone together with a 0.01-Ry Marzari–
Vanderbilt smearing60. To simulate a 2D system irrespective of the three-
dimensional periodicity requirements of plane-wave basis sets, a vacuum layer of
20Å is added between periodic replicas in the vertical direction. Relaxed structures
are obtained within the Broyden–Fletcher–Goldfarb–Shanno method by requiring
that the forces acting on atoms are below 0.026 eVÅ� 1 and the residual stress on
the cell is o0.5 kbar. Some simulations have been performed without relaxation to
simplify the calculations without qualitatively affecting our results. We notice that
the well-known density-functional theory limitations in predicting energy gaps
influence only quantitatively the relation between free charge density, electric fields
and width of the system, without changing the general physical picture or its
asymptotic limits. Maximally localized Wannier functions have been computed
using the Wannier90 code (ref. 61).
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