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Identifying the factors that influence the outcome of host–microbial interactions is critical to

protecting biodiversity, minimizing agricultural losses and improving human health. A few

genes that determine symbiosis or resistance to infectious disease have been identified in

model species, but a comprehensive examination of how a host genotype influences the

structure of its microbial community is lacking. Here we report the results of a field

experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that

colonize its leaves and the host loci that influence the microbe numbers. The composition of

this community differs among accessions of A. thaliana. Genome-wide association studies

(GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation

in this community. Furthermore, species richness in the bacterial community is shaped by

host genetic variation, notably at loci that also influence the reproduction of viruses, trichome

branching and morphogenesis.
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P
lants, the main driver of primary productivity in terrestrial
ecosystems, provide habitat to countless bacteria, yeasts,
filamentous fungi, protists, oomycetes and nematodes.

Recent studies have investigated the role of the environment
and host-genetics in affecting the bacteria that live in both the
rhizosphere1–5 and phyllosphere6–9. The discovery that these
communities are shaped, at least in part, by host genetic variation
motivates the search for the host genes involved2–4,6,9.

The plant genetic model, A. thaliana, is ideal for investigating
the molecular bases of traits of ecological and agricultural interest,
including resistance to fungal and bacterial species, and has been
used successfully to identify loci that recognize individual isolates
of model pathogens10,11. Here we investigate which microbial
species colonize the leaves of A. thaliana and whether host-
genetic factors play a discernible role. For this purpose, we grew a
worldwide diversity panel of 196 accessions10 (Supplementary
Table 1), in replicate, in a field site where the species occurs. To
be consistent with the predominantly winter-annual life history of
A. thaliana, we conducted our experiment from autumn to

spring, and at the end of the experiment took a ‘snapshot’ of the
microbial community by flash-freezing samples in the field. Here,
in addition to characterizing the bacteria and fungi that live in the
leaves of A. thaliana, we identify the host genes that contribute to
the structure of its microbial community.

Results
The leaf microbial community of A. thaliana. Leaves were
washed and vortexed to remove loosely associated microbes
before extracting DNA from each leaf rosette. To characterize the
bacterial community in each sample, variable regions 5 (V5), 6
and 7 of bacterial 16S ribosomal DNA (rDNA) genes were PCR-
amplified using the primer pair 799F and 1193R. In addition, the
first internal transcribed spacer (ITS1) within eukaryotic rDNA
was amplified using the fungal-specific primer ITS1-F with ITS2.
All amplicons were sequenced, in multiplex, using a 454 FLX
system (Titanium chemistry). After basic quality control (Meth-
ods), B3,186±2,202 (mean±s.d.) bacterial reads (1,768,402
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Figure 1 | Genetic variation within A. thaliana shapes the composition of the best-sequenced members of the microbial community. (a) Using

eigenvector techniques, inbred replicates of A. thaliana cluster together only when analysing the most heavily sequenced bacteria. Nevertheless, the

vast majority of the sequencing effort characterizes a small number (and %) of taxa in each community. (b) Taken together, this implies that vagrant

species and other poorly characterized/sequenced taxa (and occasionally, sequencing artefacts) obscure evidence that hosts shape their microbial

communities. (c) Host-genetic variation within A. thaliana also affects the ability of fungi to colonize and proliferate on its leaves. All P values take into

account technical confounders.
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total reads) and B526±248 fungal reads (297,871 reads) were
obtained from each sample. DNA sequences sharing Z97%
pairwise similarity were clustered to identify species-level opera-
tional taxonomic units (OTUs).

Across accessions, we found 5,057 non-singleton bacterial
OTUs, with the majority belonging to families in the Proteo-
bacteria, Bacteroidetes and Actinobacteria (Supplementary
Fig. 1a–d). In particular, Sphingomonas (a-proteobacteria),
Flavobacterium (Bacteroidetes), Rhizobium (a-proteobacteria)
and Pseudomonas (g-proteobacteria)—all of which are known
to occur in the phyllosphere of A. thaliana throughout much
of the species range12,13—were common genera. A total of
2,582 non-singleton fungal OTUs were also observed,
mostly representing families from the ascomycete classes
Dothideomycetes and Sordariomycetes, and the basidiomycete
class Tremellomycetes (Supplementary Fig. 1e–h). Genera known
to contain plant pathogens included Epicoccum, Alternaria,
Mycosphaerella, Fusarium and Plectosphaerella. The most
heavily sequenced (that is, most ‘abundant’) fungal OTUs share
taxonomic affinity with the genus Tetracladium, which, although
originally assumed to be restricted to aquatic environments, are
frequently found on plants14.

After correcting for differences in sequencing among samples
and adjusting for technical confounders, strong and significant
species associations (Kendall’s Test of Concordance15, P¼ 0.001,
1,000 permutations) were observed within both the bacterial and
fungal communities (Supplementary Figs 2 and 3), suggesting
that members of the microbial community interact or that
portions of the microbial community respond to the same host
factors. To take into account these correlations, we summarized
each community using eigenvector techniques (Methods),
including principal component analysis (PCA) and canonical
correspondence analysis (CCA).

The leaf microbial community is shaped by host genetics. We
found that genetic variation within A. thaliana clearly shapes the
leaf bacterial community, but only when we focused on the most
heavily sequenced OTUs. As an example, PCA of the bacterial
community distinguishes accessions of A. thaliana according to
host-genotype, with inbred replicates of the same accession sig-
nificantly clustered together (Fig. 1a; Methods) when analysing, at
most, the top 50% of the community (H2B40%; P¼ 0.044, 1,000
permutations; for the top 1%, H2B42%; P¼ 0.004). However,
these 2,528 bacterial OTUs correspond to 499% of the sequen-
cing reads, which suggests that rare species or sequencing arte-
facts16,17 may obscure evidence that hosts structure their
microbial communities (Fig. 1b).

Species of bacteria tend to be more prevalent (that is, common)
across host samples than species of fungi, leading to higher
estimates of turnover (b-diversity) in the fungal than bacterial
community (Supplementary Fig. 4). It is unclear whether fungi
disperse poorly compared with bacteria, or whether other factors
(for example, host selection and/or interspecific competition)
differentially shape these two communities. Nevertheless, both
presence/absence and abundance data reveal clear evidence that
host-genetic variation shapes the communities of fungi associated
with the leaves of A. thaliana, but for only the most heavily
sequenced taxa (Fig. 1c).

We looked for further evidence that hosts shape their microbial
communities by using genome-wide single-nucleotide poly-
morphism (SNP) data18 to estimate the relatedness among
accessions, before asking whether more closely related individuals
harbour more similar communities. This approach is likely to
underestimate the heritability of traits influenced by non-additive
effects, genetic heterogeneity19, or by rare causal SNPs in

incomplete linkage disequilibrium (LD) with genotyped
SNPs4,20; nevertheless, heritable eigenvectors were found in
both communities, regardless of the ordination technique used
(Methods; Supplementary Table 2). For example, SNPs explain
9% of the variance for PC1 (P¼ 0.003) and 8% of the variance for
PC2 (P¼ 0.015) from PCA of the fungal community, as well as
11% of the variance for PC2 of the bacterial community
(P¼ 0.001).

The genes associated with the leaf microbial community.
Having established that microbial communities are shaped by
host genotypes, we turned to GWAS21–23 to map any major
genetic variants underlying variation in these eigenvectors and,
separately, the presence/absence and abundance of the most
heavily sequenced (n¼ 100) taxa in each kingdom. In addition, to
explore the processes shaping each microbial community, we
used a false discovery rate (FDR)24 of 10% to identify enriched
gene ontology (GO) categories (Methods)25.

We found that bacterial and fungal communities are shaped by
similar biological processes, albeit by different underlying genes.
In the analysis of individual OTUs, a few genomic regions stand
out as being generally important (Fig. 2 and Supplementary
Table 3), and candidate genes significantly overrepresented across
analyses (Methods) tend to be associated with OTUs in only one
kingdom (but see Supplementary Table 4). In contrast, gene set
enrichment analyses reveal that the most common biological
process overrepresented across analyses is ‘defense response’,
followed closely by kinase-related activities, for both the bacterial
and fungal community (Table 1).

The cell wall, comprising the polysaccharides cellulose (b-1,4-
glucan), callose (b-1,3-glucan) and pectin (a heteropolysacchar-
ide), is one of the first obstacles for any plant pathogen, and
biological processes associated with the cell wall are significantly
overrepresented across GWAS of individual bacterial species.
Similarly, for the combined fungal community, the strongest
GWAS peaks for PC1 and PC2 from PCA each fall within
candidate genes implicated in cell wall integrity. For PC1, the top
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Figure 2 | The most frequently observed genomic region in the results

from GWAS of the 100 most heavily sequenced bacterial OTUs. The

points illustrate the minimum P value, per 10-kb region, from these separate

analyses (that is, separate GWAS of individual OTUs), and this region is

shared in the extreme tail for 9 out of these 100 OTUs (100,000

permutations; P¼ 1� 10� 5). Notable a priori candidate genes include FAD2

and TBL1; as mentioned in the main text, the TBL gene family is involved in

secondary cell wall synthesis and cellulose deposition. The association

peaks, however, on TETRASPANIN 6 (TET6), a gene involved in metal ion

transport.
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SNP lies within GLUCAN-SYNTHASE-LIKE 11 (GSL11); a
related locus (GSL5) in A. thaliana seals wounds that arise
during fungal infection using callose26. For PC2, the top SNP falls
within a member of the TRICHOME BIREFRINGENCE-LIKE
gene family (TBL37), which is involved in secondary cell wall
formation through the deposition of cellulose27.

Plant microtubules, which form the cytoskeleton and are
regularly moved to the site of contact with a microbe, act as either
a defense mechanism or, after reorganization of the plant cell
wall, enable compatible symbioses with diverse microbial
species28. Still other pathogens depolymerize microtubules to
facilitate infection; in the case of viruses, microtubules provide a
means for intra and intercellular mobility. Several distinct
microtubule-related categories are significantly enriched in the
results from GWAS of the fungal community (Supplementary
Table 5).

Although many of the strongest associations are implicated in
the presence/absence or abundance of only one or a few OTUs,
several of these are members of large gene families, some of which
are likely to be functionally redundant. For example, ATP-
binding cassette (ABC) transporters ferry metabolites around the
cell and across the cell membrane, and mutations in ABC
transporters lead to various human diseases (for example, cystic
fibrosis29) and plant resistance to a number of toxins and
pathogens30. ABC transporters are found among the strongest
associations from GWAS of both bacterial and fungal OTUs (for
example, Fig. 3a,b and Supplementary Table 4). As another
example, pectin in the cell wall is frequently degraded by
pathogen-produced enzymes (that is, pectinases)31. Even so, we
found several (non-allelic) host polymorphisms involved in the
synthesis and esterification of pectin to be associated with various
OTUs (Fig. 3b–d), which highlights the role of cell wall integrity
in shaping the composition of the leaf microbial community. The
results from all analyses have been deposited in the Dryad Digital
Repository (http://doi.org/10.5061/dryad.8sm01).

Finally, we investigated heritability of broad community
descriptors and found that the number of bacterial species (that
is, ‘richness’) in the leaf is affected by host genetic variation
(H2B46%; P¼ 0.021), with host SNPs explaining B8%
(P¼ 0.023) of the phenotypic variance. Among the most
significantly enriched biological processes in the results from
GWAS (Table 2) are categories related to trichomes, which
modify water use, leaf reflectance and temperature32. In the case
of plant defense, trichomes tend to discourage insect
herbivory33,34 and have been reported to facilitate infection by

some species of fungi, both by catching spores35 and by giving
fungi a means to proliferate on the leaf36. It is not clear how
trichomes shape the bacterial community, but it is interesting to
note that bacterial species richness does not change with the
number of trichomes on a leaf10 (P¼ 0.32, simple linear
regression), unless the plants were induced with the defense
hormone jasmonic acid (b¼ � 0.13, R2¼ 0.06; P¼ 0.026). It is
thus tempting to speculate that richness in the leaf bacterial
community is shaped by other plant enemies (for example,

Table 1 | Biological categories most often enriched in GWAS
of the 100 most abundant OTUs.

Kingdom Biological category Number
of OTUs

Rank P-value

Fungi Defense response 21 1 1� 10� 5

Fungi Signal transduction 12 2 1� 10� 5

Fungi Protein serine/threonine
kinase activity

9 3 2� 10� 5

Bacteria Defense response 9 1 1� 10� 5

Bacteria Kinase activity 8 2 1� 10� 5

Bacteria Casparian strip 7 3 0.00015
Bacteria Cell wall modification 7 3 0.00015
Bacteria Cell–cell junction assembly 7 3 0.00015
Bacteria Plasma membrane part 7 3 0.00015

GWAS, genome-wide association studies; OTU, operational taxonomic unit.
Storey’s procedure24 was used to correct for multiple testing (FDRr10%). Only the top three
enriched GO-terms are shown, unless there are ties among results. The probability of observing
the same category across analyses was determined through 100,000 permutations (Methods).
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Figure 3 | Genes implicated in the community composition of the leaves.

The ABC transporter C family members 7 and 8 (multidrug resistance-

associated proteins 7 and 8) are associated (Chr 3, B4.21Mb) with the

abundance of an OTU assigned to Mycosphaerella (a), while ABC

transporter G family member 35 (pleiotropic drug resistance 7; Chr 1,

B5.23Mb) and a pectinesterase (AT2G36710; Chr 2, B15.392Mb) are

implicated in the abundance of an OTU assigned to Sphingomonas (b).

Other pectin-related enzymes include the pectate lyase (AT4G13210; Chr 4,

B7.67Mb) associated with the abundance of Chryseobacterium (c) and the

pectinesterase (AT5G26810; Chr 5 B9.432Mb) associated with the

abundance of Xanthomonas (d). Notable a priori candidate genes also

include TERPENE SYNTHASE 10 (TPS10; Chr 2, B10.297Mb) identified in

(a), the resistance gene (R-gene) pinpointed (Chr 5, B18.287Mb) in (c),

and the oxidoreductase (Chr 4, B9.708Mb) illustrated in (d). To assess

genome-wide significance, a permutation approach was used that takes into

account population structure (Methods).
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insects, fungi) that vector bacteria or trigger defense responses.
An additional difficulty is that the pathways responsible for
trichome and cuticle synthesis overlap37, and mutants in cuticle
formation host altered microbial communities9. Deciphering how
hosts shape bacterial communities is clearly complex, and one
must remain aware of both genetic constraints within the host
and impacts of other species. In fact, in the results from GWAS of
leaf bacterial richness, the most significantly enriched category
involves the reproduction of viruses, implying that these loci are
pleiotropic or that leaf-associated bacteria and viruses interact, as
has been observed during human respiratory38 and polio39

infections.

Discussion
In summary, our results demonstrate that GWAS can help to
identify the loci and host processes that structure microbial
communities. However, our results also emphasize the need,
moving forward, to consider the role of genetic heterogeneity and
interactions among microbes in shaping these communities.
The role of life-history traits40 (that is, plant phenology) and the
environment should also be taken into account. Studies of the
rhizosphere demonstrate a role of soil type and chemistry in
addition to host genetics3–5. In our study, we controlled for the
environment (Methods), but differences in the environment could
cause distinct loci or host processes (for example, Tables 1 and 2)
to shape the leaf microbiome of A. thaliana at different times or
places. Similar patterns have been observed for flowering time, a
trait for which few candidate genes are identified in both field and
greenhouse conditions41. Be that as it may, adjusting for
environmental factors improves power in mapping studies42,43,
and an understanding of important environmental factors should
improve the ability to predict microbial phenotypes. As
sequencing costs continue to decrease, the ability to dissect the
host–microbial interactions affecting human disease, agriculture
and conservation efforts is finally within reach.

Methods
Field experiment. We sowed four replicates of each of 196 accessions of
A. thaliana (Supplementary Table 1) in two randomized blocks (two replicates per
accession per block) using a mixture (1:1) of Fafard C2 and Metromix 200 soil. The
soil was autoclaved to reduce the number of greenhouse bacteria and fungi on
plants, before transferring them to the field. Seeds were watered and then stored in
a cold dark room (4 �C) to homogenize germination. After 7 days of stratification,
all plants were moved to a glass greenhouse and grown in 12 h of light (20 �C) for
19 days (allowing most accessions to germinate and reach the 4-leaf stage).

These plants were then transferred to a field site (42.0831�N, 86.351�W;
Southwest Michigan Research and Extension Center, Benton Harbor, MI, USA;
22 October, 2008) known to host a naturalized population of A. thaliana. Within
blocks, samples were planted 10 cm apart from one another, and the blocks
were separated by 2m. The plants were watered generously on the day of
transplanting, but were otherwise left untreated until the end of the experiment.

Weather records for the field station can be found at: http://www.enviroweather.
msu.edu/weather.php?stn=swm

The following spring (27 March, 2009), we used a sterile technique and flash-
froze samples in the field using liquid nitrogen, before transferring them to the lab
on ice. Samples were stored at � 80 �C until further processing.

Isolation of host-associated microbial DNA. Before DNA extraction, we
removed the most loosely associated microbes from each rosette, by washing each
sample using an earlier approach13,44. In brief, we washed each sample first in
0.1M potassium phosphate buffer, pH 8.0, then in 70% ethanol and finally in
sterile water; the water wash was repeated three times. Samples were vortexed (20 s)
and centrifuged between each wash before the supernatants were discarded,
presumably leaving the most tightly associated members of the epiphytic
communities, as well as the endophytic communities. The samples were then
extracted using Mo Bio’s Ultra-clean htp-96-well Plant DNA Isolation Kit. To
increase cell lysis, we repeated the manufacturer’s recommended freeze-thaw
method three times before DNA extraction. DNA was stored at � 20 �C until used
in PCR.

Amplicon library preparation and sequencing (16S and ITS). To characterize
the bacterial and fungal communities of A. thaliana, each sample was used as a
template to PCR amplify phylogenetically informative regions of 16S (bacteria) and
ITS-1 (fungi). We used 454 FLX Titanium emPCR Kits (Lib-L) for all sequencing.

Bacteria. To survey bacterial communities, GS FLX Titanium Primer B
(50-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-30) was attached to 799F
(50-AACMGGATTAGATACCCKG-30)45; Primer A (50-CCATCTCATCCCTGCG
TGTCTCCGACTCAG-30) was combined with a 12-bp error-correcting barcode46,
a 2-bp linker (50-AT-30) and the reverse primer 1193R (50-ACGTCATCCCCAC
CTTCC-30)13. Together, 799F and 1193R amplify the hypervariable regions V5, V6
and V7 of the 16S gene.

Fungi. To amplify ITS-1, Primer B (above) was attached to the fungus-specific
ITS1F (50-CTTGGTCATTTAGAGGAAGTAA-30)47; Primer A included a 12-mer
barcode, a 2-bp linker (CA) and ITS2 (50-GCTGCGTTCTTCATCGATGC-30)48.

Each sample was PCR-amplified in triplicate, and each 25-ml reaction contained
2-ml genomic DNA, 10-ml 2.5x HotMasterMix (5-Prime) and 0.2 mM of each
primer. PCR conditions included an initial denaturing step at 94 �C for 2.5min,
followed by 30 cycles of a denaturing step (94 �C for 30 s), an annealing step (55 �C
for 40 s) and an extension step (68 �C for 40 s). A final extension step at 68 �C was
performed for 7min before storing the samples at 4 �C. When necessary, PCR
dropouts were re-amplified. All samples were quantified using Picogreen
(Invitrogen), and these barcoded libraries were pooled to equimolar
concentrations.

799F and 1193R exclude chloroplast DNA45. To exclude the remaining
mtDNA, we captured the phylogenetic target (B505 bp including the above
primers) using a 2% agarose gel. Although this approach is effective in minimizing
the amplification of host DNA, it likely misrepresents the abundances of several
interesting taxa45, such as the Cyanobacteria. The gel slices were extracted
(QIAGEN’s QIAquick), and samples were further purified with Ampure magnetic
purification beads (Agencourt). Finally, samples were quantified using the Qubit
dsDNA HS Assay Kit (Invitrogen) and sequenced using 454 FLX Titanium based-
chemistry (Roche Life Sciences).

16S/ITS1 rDNA data processing. We denoised all of the SFF files generated from
pyrosequencing using AmpliconNoise (version 1.25)17 and QIIME (1.3)49. We
required sequence reads to be o500 bp and used Perseus17 to minimize the
number of chimeras. We initially created 560 bacterial amplicon libraries and 570
fungal amplicon libraries with PCR; denoising these resulted in 555 bacterial and
566 fungal samples.

We used the default parameters in QIIME to pick OTUs sharing 97% sequence
similarity (using the algorithm, ‘cdhit’ (3.1)). Each bacterial OTU was assigned
taxonomic status using the RDP (2.2) algorithm, also implemented in QIIME. To
determine the taxonomic affinity of fungal OTUs, we used the software package
MARTA50.

Samples with poor sequencing coverage were omitted from all analyses. We
required a minimum of 800 reads per bacterial sample and 200 reads per fungal
sample; this resulted in 512 bacterial and 549 fungal samples. To correct for
differences in sequencing effort (coverage), each sample was resampled to either
800 reads (for bacteria) or 200 reads (for fungi). However, all samples were
resampled to contain 200 reads before making comparisons between the bacterial
and fungal communities (for example, Supplementary Fig. 4). Because the samples
were grown in different blocks (above), PCR-amplified in separate 96-well plates
and sequenced on separate picotiter (ptp) plates, we took into account these
covariates in the analyses described below.

Microbial analyses. Associations among microbes. To perform Kendall’s Test, we
used the kendall.global function in the R-package51 vegan52.

Ordination techniques. The function rda (scale¼T) in vegan was used to
perform PCA, while cca was used for CCA. decorana was used to perform detrended
correspondence analysis (DCA). To test the hypothesis that accessions of

Table 2 | Biological categories enriched in the 5% tail from
GWAS of the log of species richness (S) in the bacterial
community.

Biological process Enrichment Storey’s FDR, qo0.1

Regulation of viral reproduction 20.1 0.022
Trichome branching 4.5 0.029
Meiosis 4.7 0.082
Plastid stroma 4.5 0.082
Trichome morphogenesis 3.4 0.085
Perinuclear region of cytoplasm 8.6 0.096
Xyloglucan biosynthetic process 8.6 0.096

FDR, false discovery rate; GWAS, genome-wide association studies.
Storey’s procedure24 was used to correct for multiple testing (FDRr10%)
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A. thaliana differ with respect to the composition of their microbial communities,
which we characterized with these ordination techniques, we used the functions
envfit (for unconstrained ordination techniques) and anova.cca (for ordinations
produced by CCA). To investigate whether host genetic differences are easier to
discern for well-sequenced taxa than rare taxa (that is, due to species turnover
among rare species in the microbial community, sequencing artefacts or some
other mechanism), we ordered the species matrix by total (maximum) sequencing
coverage per OTU. We prefer to characterize well-sequenced taxa as ‘most
heavily sequenced OTUs’ rather than ‘most abundant’ because of common technical
artefacts (due to primer biases or RNA operon count differences, and so on).

In brief, envfit identifies the direction in multi-dimensional ordination space
that is maximally associated with an environmental variable (here, host genotype,
or accession_id). The goodness-of-fit statistic is r2 that is equal to 1� (ssw/sst); ssw
is the within-group sum of squares and sst¼ the total sums of squares. To assess
the significance of this association, we permuted the data 999 times and counted
the number of times that these simulated r2 values matched or exceeded the
observed r2 value (including the observed r2 value, which is assumed to be an
observation from the null distribution). To determine whether ordinations
produced with CCA are shaped by host-genotype, we used the function anova.cca.
This function also relies on permutation tests, but does so to determine how often
the observed constrained inertia (the constraint being host-genotype) is exceeded
when the data are randomly permuted.

Genome-wide association studies. We used a mixed-model approach21,22 as
implemented in the mixmogam package23 to account for the complex pattern of
relatedness among our accessions for all GWAS. To estimate a genome-wide P
value threshold, we performed permutations, where we re-ran association scans
(genome-wide) using a linear transformation of the phenotype values. Our method
controls for population structure using an approach similar to ref. 53; however,
instead of simulating phenotypes under the null, we permute the transformed
phenotype values. This allows us to also control for false positives that can arise if
the residuals do not come from a Gaussian distribution. The transformation matrix
is the Cholesky decomposition of the inverse phenotypic covariance matrix, as
estimated from the mixed model. By applying this linear transformation to the
phenotype values, the resulting vector contains values that are expected to be
uncorrelated; we randomly permute these to obtain a new vector that we transform
as described in ref. 53, that is, using the Cholesky decomposition of the phenotypic
covariance. As we use efficient mixed models and we only need to transform the
phenotypes and the genotypes once, the time complexity of the permutation is
O(n2mþ knm), where n is the number of individuals, m is the number of genotype
variants tested and k is the number of permutations. We performed k¼ 100
permutations for each trait.

Phenotypes. To correct for differences in sequencing effort among samples, all
data were resampled to either 800 reads (bacterial community) or 200 reads (fungal
community) before conducting GWAS using common SNPs (minor allele
frequency Z5%). To identify loci underlying variation in the structure of the
bacterial and fungal communities, we considered each (separate) community as an
aggregate. The raw data from each community were Hellinger54 transformed (that
is, the OTUs in each sample were expressed as a fraction of the sampling effort and
then square-root transformed) before PCA was performed on the most heavily
sequenced members of these communities. To be consistent with the results
illustrated in Fig. 1, we analysed the top 2% of the fungal community and the top
50% of the bacterial community. However, we noticed that we could explain a
larger fraction of the variance (both from PCA and from SNPs) by analysing
smaller fractions of the bacterial community, due to species turnover in the
community and the different number of variables considered by PCA. We also
conducted GWAS after analysing each microbial community using CCA on the top
2% of the bacterial community and top 3% of the fungal community; DCA was
performed on the top 5% of the fungal community and the top 2% of the bacterial
community. In general, many researchers prefer CCA over PCA because it is more
robust to the so-called ‘horsehoe effect’; its drawback is that eigenvalues from CCA
are not as easily interpreted as in PCA. The top five eigenvectors from CCA and
PCA were analysed in GWAS. Only four axes (DCA1–4) are output from decorana
(vegan’s function to perform DCA).

To evaluate the association between these SNPs and the abundance of
individual bacterial or fungal OTUs, each species matrix was either square-root
transformed or analysed as the presence/absence of the 100 most heavily sequenced
OTUs in each community. As above, we used the vegan function cca to ‘partial-out’
the technical confounders (cca performs QR decomposition) block, picotiter plate
and PCR plate, using the residuals from cca as phenotypes in GWAS, similar to
earlier PCA-based approaches55.

To identify loci associated with bacterial species richness56 (diversity of order
0), the number of species within each sample was tallied and log-transformed;
technical confounders (above) were regressed out before conducting GWAS.
Because RNA operon counts differ among species, and bias results from PCR, we
avoided estimating ‘true’ diversity (diversity of order 1), which is often calculated
using Shannon diversity.

The most common results from GWAS. To identify genomic regions shared in
the top results from these GWAS, we combined GWAS analyses of the colonization
(presence/absence) and proliferation (abundance) for each OTU into one data set.

To do so, we combined P values from GWAS using Brown’s method57, which is
similar to Fisher’s combined P value approach, but suitable for correlated data sets
(for example, the P values from these two analyses).

We split the results from each analysis into 10-kb windows (yielding 11,614
windows). Then, to make the results comparable across GWAS, we ranked and
calculated an empirical P value for each window. Next, we determined the amount
of overlap in the top results (Pr0.001, empirical P value) from GWAS of
individual OTUs in each community. To determine the significance of observed
sharing, we used 100,000 simulations to construct a null distribution; each
observation in the null was based on selecting 11 (Pr0.001) windows from each of
100 simulated GWAS results (that is, 100 OTUs). We then counted the number of
times a window was shared ‘x’ or more times. To assess the probability of observing
the same genomic region in the bacterial and fungal analyses, we sampled from 200
simulated GWAS results (that is, 100 OTUs from each community).

Enrichment of GO-categories in the results from GWAS. To determine which
biological processes underlie variation in the composition of A. thaliana’s microbial
community, we tested for an overrepresentation of gene ontology (‘goterm’)
categories25 (ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/) in
the top results from GWAS. We omitted gene models with low confidence
(evidence code: ‘inferred from electronic annotation’ (IEA)) and any biological
category represented by only one gene model, leaving 3,588 unique GO-terms.

Next, we split the results from GWAS into 10-kb windows and took the
minimum score within that window as the test statistic. We then counted the
number of gene models (± 1,000 bp surrounding DNA) within the top 5% of these
(windowed) GWAS results. To ensure that we identify ‘broadly’ (that is, genome-
wide) enriched categories, we required at least three 10-kb windows to contain gene
models from the gene set category. To account for multiple testing, all P values
were corrected using Storey’s approach24 at an FDR level of 10%.

To determine the probability of observing a GO-term enriched in the results
from GWAS multiple times (as illustrated in Table 1), we simulated gene set
enrichment analyses. That is, we used 100,000 permutations to construct a null
distribution where each observation in the null was constructed by randomly
selecting (and tallying), 100 times (that is, 100 OTUs), the same number of GO-
terms significantly enriched in the analyses of each OTU. The P values reported in
Table 1 reflect the number of times that a biological category is shared x or more
times in this null distribution.
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