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The quantum nature of skyrmions and
half-skyrmions in Cu2OSeO3
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The Skyrme-particle, the skyrmion, was introduced over half a century ago in the context of

dense nuclear matter. But with skyrmions being mathematical objects—special types of

topological solitons—they can emerge in much broader contexts. Recently skyrmions were

observed in helimagnets, forming nanoscale spin-textures. Extending over length scales much

larger than the interatomic spacing, they behave as large, classical objects, yet deep inside

they are of quantum nature. Penetrating into their microscopic roots requires a multi-scale

approach, spanning the full quantum to classical domain. Here, we achieve this for the first

time in the skyrmionic Mott insulator Cu2OSeO3. We show that its magnetic building blocks

are strongly fluctuating Cu4 tetrahedra, spawning a continuum theory that culminates in

51 nm large skyrmions, in striking agreement with experiment. One of the further predictions

that ensues is the temperature-dependent decay of skyrmions into half-skyrmions.
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S
kyrmionic spin textures in magnetic materials correspond
to magnetic topological solitons. They were first observed in
the non-centrosymmetric B20 helimagnets MnSi1,2, FeGe3

and Fe0.5Co0.5Si (ref. 4). These skyrmionic textures are
encountered also in a completely different branch of physics: in
the theoretical description of nuclear matter5,6. In this setting the
skyrmions are of course not related to magnetic degrees of
freedom, but rather to particles emerging from cold hadron
vector fields at densities a few times that of ordinary nuclear
matter. This is the density range relevant for compact
astronomical objects such as neutron stars7–9. The perhaps
perplexing connection between these two seemingly disparate
fields of physics is borne out of the underlying mathematical
structures7–14. The physical phenomena in the two different
settings are both governed by an emerging set of differential
equations with topological solitonic solutions: the skyrmions
found first by Skyrme in the 1960s (ref. 5).

In this context, we investigate the formation and microscopic
origin of the observed magnetic skyrmions in helimagnets. These
skyrmions are large objects compared with the atomic length
scale: they are about three orders of magnitude larger in size than
the interatomic lattice spacing. Understanding the origin of these
nanometre-scale skyrmions therefore requires a multi-scale
approach. In the above-mentioned B20 helimagnets, such is
however not viable because all these materials are metallic. The
metallicity causes low-energy, delocalized electronic and magnetic
degrees of freedom to mix so that they intrinsically involve
multiple energy and spatial scales, which renders a multi-scale
approach presently intractable.

This is very different in the recently discovered skyrmionic
material Cu2OSeO3, a large band-gap Mott insulator. The band
gap enforces a natural separation between electronic and
magnetic energy scales, which is advantageous for theoretical
studies, as it allows for an accurate multi-scale approach.
Cu2OSeO3 is actually the first example of an insulating material

displaying the chiral helimagnetism that is desired for skyrmion
formation while sharing the non-centrosymmetric cubic space
group P213 of the metallic B20 phases, but with a unit cell that is
much more complex, containing 16 Cu atoms. Due to the
presence of a magnetoelectric coupling15,16, its skyrmions can be
manipulated by an electric field17–19, which is in principle very
energy efficient as this avoids losses due to joule heating.

Here we present the results of a quantitative multi-scale study
of Cu2OSeO3, from the atomic up to the mesoscopic length scale.
We find that the chiral helimagnetism and skyrmion formation in
Cu2OSeO3 relies on the presence of Cu4 tetrahedral building
blocks that have a strong quantum-mechanical character. These
effective entities spawn a continuum theory that results in
skyrmions with a diameter of 51 nm, in quantitative agreement
with reported experiments15, and lead to a series of key
experimental ramifications. Most notably, a skyrmion
fractionalization in a specific temperature and magnetic field
range, the existence of weakly dispersive magnetic excitations at
high energies, and the presence of a weak antiferromagnetic
indentation of the primary ferrimagnetic order parameter, which
turns out to be responsible for the sign of the magnetic chirality.
The quantum nature of the tetrahedral building blocks is also
responsible for the reduction of the local spin expectation values
and the low effective energy scale (which sets, for example, the
value of the ordering temperature TC), compared with the
microscopic exchange energy scales.

Results
Roadmap of multi-scale approach. The key aspects of heli-
magnetism and skyrmion formation in chiral magnetic systems
such as Cu2OSeO3 are shown in Fig. 1 and the main steps of our
multi-scale approach are outlined in Fig. 2. We first evaluate the
Heisenberg exchange and Dzyaloshinskii-Moriya (DM) interac-
tions at the atomic level, using ab initio density functional theory

Figure 1 | Spin textures in chiral helimagnets. Besides flat helices (a), chiral helimagnets like Cu2OSeO3 manifest radially symmetric topological solitons

like skyrmions (b) or half-skyrmions (c), where the local order parameter (sectioned arrows) forms a double-twisted core, tracing out the whole (b) or half

(c) of the Bloch sphere. (d) Parallel skyrmions can form densely packed lattices in two spatial dimensions. In a, the colouring of the sectioned arrows tracks

the direction of the magnetization in the plane of rotation, while in (b–d) it tracks the longitudinal magnetization. (e) Quantitative first-principles

calculations predict that the ferrimagnetic order in Cu2OSeO3 is locally altered by the multi-sublattice structure, leading to weak antiferromagnetism

(depicted by orange arrowheads). (f) The skyrmion texture is locally composed of these three-dimensional canted spin patterns. Thus, the weak

antiferromagnetic order itself is modulated along with the primary ferrimagnetic twisting shown in b.
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(DFT) calculations (Fig. 2a). The resulting parameters reveal a
striking separation of exchange energy scales which split the
system into a network of magnetically ‘weak’ and ‘strong’ tetra-
hedra (Supplementary Note 1). The latter are the basic building
blocks of helimagnetism in Cu2OSeO3: each ‘strong’ tetrahedron
behaves as a spin-1 triplet (apart from a finite quintet admixture,
see Methods section), protected by a large energy gap of
DC275K (Fig. 2c). Integrating out the dominant energy scale
leads to an effective model on the so-called trillium lattice
(Fig. 2d), marking a close analogy to MnSi and FeGe. The
description at the mesoscopic scale is finally achieved by a long-
wavelength expansion of the effective model, which delivers the
two basic parameters that control the skyrmionic physics (Fig. 1)
in Cu2OSeO3: the exchange stiffness A and the twisting para-
meter D. Supplementing the free energy with further anisotropies
and entropic effects, and using a minimal amount of experimental
information, we arrive at a quantitative Dzyaloshinskii model,
which in turn gives access to the magnetic phase diagram and
other experimentally accessible observables. The ensuing notable
predictions are the presence of a fractionalized skyrmion phase
(Fig. 1c), the presence of a small AFM canting, which is adia-
batically tied to the twisting of the total magnetization (Fig. 1e,f),
and the important role of the canting in controlling the sign of
the magnetic chirality. The quantum-mechanical nature of the
‘strong’ tetrahedra also has an additional number of profound
ramifications that will be discussed in detail.

Description at the atomic level. To elucidate the quantum
origin of the skyrmion textures in Cu2OSeO3, we proceed with a
calculation of magnetic interactions at the atomic level. In
undoped cuprates with Cu2þ atoms, such as Cu2OSeO3, the
localized S¼ 1/2 magnetic degrees of freedom originate from a
single hole in the 3d electronic shell. In the crystal structure of
Cu2OSeO3, the Cu2þ atoms make up a three-dimensional net-
work of corner-sharing tetrahedra (Fig. 2b) with two inequivalent
Cu sites, Cu(1) and Cu(2) featuring a different local environment:
Cu(1)O5 bipyramids and distorted Cu(2)O4 plaquettes, respec-
tively20,21. Each tetrahedron contains Cu(1) and Cu(2) in a ratio
of 1:3. The resulting net of magnetic Cu ions in Cu2OSeO3 thus
has a structure that is rather different from the previously
mentioned metallic B20 helimagnets such as MnSi, where the
magnetic Mn ions form a three-dimensional corner-sharing net
of triangles, commonly referred to as the trillium lattice. The
more complex crystal structure of Cu2OSeO3 leads to five
inequivalent superexchange coupling constants Jij between
neighbouring S¼ 1/2 copper spins i and j (see Supplementary
Fig. 1) and also five different Dzyaloshinskii–Moriya (DM)
vectors Dij in the microscopic magnetic Hamiltonian

H ¼
X
i4j

JijSi � Sj þDij � Si�Sj; ð1Þ

where Si denotes the quantum-mechanical spin operator at the
Cu site i. We have determined these coupling constants (Table 1)
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Figure 2 | Multi-scale modelling of Cu2OSeO3. (a) The crystal structure is shaped by Cu(2)O4 plaquettes (yellow) and Cu(1)O5 bipyramids (orange),

and covalent Se-O bonds (thick lines), forming a sparse three-dimensional lattice. This lattice can be tiled into tetrahedra (dashed lines), each

composed of one Cu(1) and three Cu(2) sites, depicted by large light brown and light cyan spheres, respectively. (Smaller spheres show the remaining

non-magnetic sites). (b) The magnetic Cu2þ ions form a distorted pyrochlore lattice, a network of corner-shared tetrahedra. DFT calculations evidence

the presence of both types of magnetic interactions—antiferromagnetic (red) and ferromagnetic (blue), in agreement with experimental magnetic

structure (arrows). The strength of a certain coupling is indicated by the thickness of the respective line. The strongest couplings, JAFS and JFMS , are found

within the tetrahedra (shaded), while the couplings between the tetrahedra, JAFW , JFMW , and JAFO:::O (the latter is a longer-range coupling), are substantially

weaker (dashed lines). (c) The quantum-mechanical treatment of a single tetrahedron t yields a magnetic spin St¼ 1 ground state, separated from the

lowest lying excitation by a large gap DC275K. (d) The tetrahedra reside at the vertices of a trillium lattice, exactly like the Mn ions in MnSi. The quantum-

mechanical nature of the effective moments is indicated by sectioned arrows.

Table 1 | Microscopic model parameters from density functional theory (DFT).

Parameters Atoms ri rj d¼ |ri� rj| (Å) JGGAþU
ij (K) Jij (K) Dij (K) Dij

�� ��= JGGAþU
ij

��� ���
JFMW , DFM

W Cu(2)-Cu(2) q5 q12 3.039 �44 � 50 (� 3.2, �0.3, � 2.8) 0.10
JAFS , DAF

S Cu(1)-Cu(2) q4 q11 3.057 149 170 (� 7.4, �9.5, 1.3) 0.08
JFMS , DFM

S Cu(2)-Cu(2) q8 q15 3.220 � 113 � 128 (2.1, 4.8, � 2.7) 0.05
JAFW , DAF

W Cu(1)-Cu(2) q1 q8 3.300 24 27 (� 5.7, � 9.3, 8.8) 0.58
JAFO:::O, D

AF
O:::O Cu(1)-Cu(2) q4 q12 6.352 40 45 (� 1.4, �0.2, �0.5) 0.04

Leading magnetic exchange integrals, evaluated using GGAþU calculations ðJGGAþU
ij Þ and further refined by fitting the Quantum Monte Carlo (QMC) simulated susceptibility to the reference

experimental data (Jij), as well as anisotropic Dzyaloshinskii–Moriya (DM) couplings Dij in Cu2OSeO3. The Cu positions (qi) are listed in the Methods section.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6376 ARTICLE

NATURE COMMUNICATIONS | 5:5376 | DOI: 10.1038/ncomms6376 |www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


by means of an extended set of ab initio density-functional-based
electronic structure calculations. As our numerical estimates are
substantially higher than the values reported in the literature22,
they were cross-checked by calculating the magnetic ordering
temperature TC and the T dependence of magnetization and
magnetic susceptibility by means of large-scale Quantum Monte
Carlo (QMC) simulations (Fig. 3). As these simulations agree
very well with the measurements, they inspire further confidence
in the accuracy of the DFT-based values.

We emphasize that the calculated Js between Cu(1) and Cu(2)
are antiferromagnetic (AFM) and between Cu(2) and Cu(2)
ferromagnetic (FM), and so the resulting spin model is not
frustrated. The skyrmionic physics stems from the DM interac-
tions, which impair the homogeneity of the FM order parameter
and cause a chiral double-twisting of the spins10–12.

Identification of the basic magnetic building block. The
exchange integrals (Table 1) reveal a pronounced hierarchy of
magnetic energy scales in Cu2OSeO3. Specifically, there is a
striking difference between two groups of exchange couplings,
splitting the system into two kinds of Cu4 tetrahedra: one with
strong (|JS|B130–170K) and the other with weak (|JW|B30–
50K) exchange couplings (see Supplementary Fig. 2). Most of the
DM terms are much smaller than the isotropic exchange:
|Dij|oo|Jij|.

The four S¼ 1/2 spins of a strong Cu4 tetrahedron can couple
together to form either two total singlets (that is, with total spin
St¼ 0), three triplets (St¼ 1) or a quintet state (St¼ 2). In a
tetrahedron with three AFM and three FM exchange couplings,
the ground state (GS) is a total St¼ 1 triplet, see Fig. 2b,c. The
triplet GS is separated from the other spin-multiplets by a large
energy gap of B275K. An important point is that the Cu4

tetrahedron triplet wavefunction is not the classical (tensor
product) state |mmm+S (where the double arrow labels the
Cu(1) site in the tetrahedron) but rather a coherent quantum
superposition of four classical states

jM ¼ 1i ¼ 1ffiffiffiffiffi
12

p 3 j """+i� j #""*i� j "#"*i� j ""#*ið Þ; ð2Þ

with M labelling the three orthogonal triplet states with M¼ � 1,
0, 1 (for brevity, only the M¼ 1 wavefunction is given above).
Although these are not the exact tetrahedron basis states due to
the presence of a finite triplet-quintet mixing (see methods
section), this representation is qualitatively correct. This effective
spin wavefunction is consistent with the experimental observation
of a locally ferrimagnetic order parameter20,21. The quantum
fluctuations ingrained into these triplet wavefunctions, however,
give rise to a substantial reduction of the local moments (Table 2),
pinpointing the origin of the small moments observed
experimentally20. As opposed to transversal spin fluctuations
arising from spin waves (which are small23, on account of the
high dimensionality, the ferrimagnetic nature of the order
parameter and the absence of frustration), these local quantum
fluctuations are longitudinal in character and hence directly affect
the effective magnitude of the spin. This picture is confirmed by a
lattice QMC simulation for the full model of Cu S¼ 1/2 spins
(Fig. 3b).

Not only are the effective triplets responsible for the spin
length reduction, they also have a decisive role for several other
aspects of direct experimental interest, such as the ordering
temperature, the skyrmion diameter and even the sign of the
magnetic chirality. The quantum-mechanical nature of the
effective triplets is therefore utterly essential, in as much as a
simple classical treatment delivers a quantitatively and even
qualitatively wrong picture, as becomes clear below.
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Figure 3 | Comparison to thermodynamic data. (a) Experimental susceptibility w(T) (squares, data evaluted from 1/w dependence in Fig. 4a of ref. 20) in

comparison with Quantum Monte Carlo (QMC) simulations for the microscopic magnetic model (solid line). (b) QMC simulations for the local spin

lengths /SzS of Cu(1) and Cu(2) spins as a function of temperature. The shaded area shows the magnetically ordered region. Arrows indicate the limiting

values of the local spin lengths as T-0. (c) Experimental51 Tdependence of the magnetization in external magnetic fields of 0.5, 4.5 and 14 Tesla (circles)

in comparison with QMC simulations for the microscopic magnetic model (lines). The simulated w*(T/J) and M*(T/J) curves are scaled with J¼ 170K and

the experimental g¼ 2.11 (ref. 21). (d) Finite-size scaling of the spin stiffness for finite lattices up to N¼8,192 sites. The crossing point T/JC0.34 indicates

the ordering temperature.
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Effective description. The above description establishes Cu4
tetrahedra carrying magnetic triplets as building blocks in
Cu2OSeO3 at the next step of the multi-scale approach. Within
this abstraction, each of these tetrahedra can be contracted to a
single lattice point which, by symmetry, can be chosen to coincide
with the position of the corresponding Cu(1) site. The ensuing
framework is shaped by corner-shared triangles that together
constitute a trillium lattice, which is precisely the same lattice that
is formed by the Mn atoms in the B20 structure of MnSi and the
Fe atoms in FeGe. This establishes a very close analogy between
Mott insulating Cu2OSeO3 and these well-known metallic heli-
magnets, despite the fundamental differences in electronic
structure. However in Cu2OSeO3, the effective triplet interactions
can be derived relying on rigorous microscopic results. At this
point both the weaker superexchange couplings Jw and the DM
interaction Dij become crucial. A straightforward perturbative
calculation reveals that their net effect is a weak FM interaction
between nearest-neighbour (NN) and next-nearest-neighbour
(NNN) tetrahedral entities, with effective exchange couplings
(Table 2, without spin-mixing)

J1 ’ � 7:5K; J2 ’ � 8:7K; ð3Þ

respectively, reflecting the tendency of the system towards FM
ordering. This drastic reduction of the energy scale in the effective

model is caused by the renormalization of the local spin moments
and the sizable quantum fluctuations inside the magnetically
strong tetrahedra. Experimentally, the most direct consequence of
this energy scale reduction is the value of TC: while a single-site
mean-field decoupling in the original spin-1/2 model gives
TC¼ 160K, the corresponding decoupling in the effective spin-1
model gives TC¼ � 4(J1þ J2)C65K, in much better agreement
with the experimental value of 60K (refs 20,21). Details of these
decouplings are provided in Supplementary Methods and
Supplementary Fig. 3.

Besides the exchange interactions, also a DM coupling between
NN and NNN entities emerges. Crucially, in the GS of a single
strong tetrahedron, all diagonal matrix elements of the DM
couplings within the tetrahedron vanish by symmetry. The twisting
mechanism that causes chiral helimagnetism in Cu2OSeO3,
therefore originates from the effective DM couplings between the
strong Cu4 tetrahedra: these will be the root cause for skyrmions to
emerge. Specifically, we find (Table 2, wthout spin-mixing),

Dr1;r4 þð0;0;1Þ � ðd1; d2; d3Þ ’ ð0:99; � 0:97; 0:74ÞK;
Dr1;r4 þð0;1;1Þ � ðd01; d02; d03Þ ’ � ð0:49; 0:56; 0:05ÞK;

ð4Þ

for a representative NN and NNN bond, respectively, while the
DM vectors for the remaining bonds follow by symmetry
(Table 3).

Description at the mesoscopic level. Having established the
effective trillium lattice model of Cu2OSeO3, we now proceed to
the long-wavelength magnetic continuum theory that allows us to
describe the helimagnetism of Cu2OSeO3 on the mesoscopic
scale. To this end, we follow Gnezdilov et al.24 and rewrite the
four tetrahedral entities in each unit cell in terms of four coarse-
grained fields, the total spin per site (in the effective model)
F rð Þ ¼

P4
i¼1 Si rð Þ=4 and three AFM fields Lm rð Þ ¼ S1 rð Þ½

þ
P4

i¼2 2di;mþ 1 � 1
� �

Si rð Þ�=4, m¼ 1–3. The energy in the
continuum limit then becomes (see Methods section), in units
of K:

EtotðF; LmÞ ¼
j
2

3F2 � L21 � L22 � L23
� �

þ a2J F � r2Fþ aDF � r�F

þ axðL1 � @zFþ L2 � @yFþ L3 � @xFÞ
� k½ðF�L1Þz þðF�L2Þy þðF�L3Þx�;

ð5Þ

where j�8(J1þ J2), a¼ 8.91113Å is the lattice constant,

J ¼ ð13� 28yþ 16y2ÞJ1 þð21� 36yþ 16y2ÞJ2;
D ¼ 2½d1 þ d01 þ d2ð4y� 3Þþ d02ð4y� 5Þ

þ 4ðd3 þ d03Þðy� 1Þ�;
x ¼ 4ð7� 8yÞJ1 þ 4ð9� 8yÞJ2; k ¼ 8ðd2 þ d02 þ d3 þ d03Þ;

ð6Þ

and y¼ 0.88557 is a structural parameter. The first term in
equation (5) is the exchange energy of the FM ground state. The
second line is the standard expression for the elastic and the
twisting portion of the energy in cubic crystals. The last two lines
are the cross-coupling terms between the FM mode F and the
three AFM canting modes Lm. Importantly, this coupling is

Table 2 | Main parameters of the theory.

SzCu 1ð Þ

D E
SzCu 2ð Þ

D E
J1 (K) J2 (K) (d1,d2,d3) (K) d01; d

0
2; d

0
3

� �
(K) J

(K)
D
(K)

J 0

(K)
D0

(K)
Qa Q0a K

(nm)
K0

(nm)

No spin-mixing � 1/4 5/12 � 7.5 �8.68 (0.99, �0.97, 0.74) � (0.49, 0.56, 0.05) � 20.11 0.95 �4.30 � 2.36 �0.024 0.27 237.91 20.40
With spin-mixing �0.38 0.46 � 12.59 � 10.58 (1.66, � 1.63, 1.24) � (0.59, 0.68, 0.06) � 27.10 1.27 � 11.19 � 2.46 �0.023 0.11 239.11 50.89

Numerical values of various microscopic model parameters of Cu2OSeO3, with and without the spin-mixing effect, namely the finite admixture of the excited quintet state into the triplet ground state,
driven by the weak, inter-tetrahedra exchange interactions.

Table 3 | Effective couplings for each of the 12 NN and 12
NNN bonds in the effective model.

ri rj rj� ri Jij Dij

q1 q4þ (0, 0, 1) (� 1/2, 3/2� 2y, 2� 2y) J1 (d1, d2, d3)
q1 q2þ (0, 1, 0) (3/2� 2y, 2� 2y, � 1/2) J1 (d2, d3, d1)
q1 q2þ (0, 1, 1) (3/2� 2y, 2� 2y, 1/2) J1 (d2, d3, � d1)
q1 q3þ (1, 0, 0) (2� 2y, � 1/2, 3/2� 2y) J1 (d3, d1, d2)
q1 q4þ (1, 0, 1) (1/2, 3/2� 2y, 2� 2y) J1 (� d1, d2, d3)
q1 q3þ (1, 1, 0) (2� 2y, 1/2, 3/2� 2y) J1 (d3, � d1, d2)
q2 q4� (0, 1, 0) (� 2þ 2y, � 1/2, 3/2� 2y) J1 (� d3, d1, d2)
q2 q3 (� 1/2, � 3/2þ 2y, 2� 2y) J1 (d1, � d2, d3)
q2 q4 (� 2þ 2y, 1/2, 3/2� 2y) J1 (� d3, � d1, d2)
q2 q3þ (1, 0, 0) (1/2, � 3/2þ 2y, 2� 2y) J1 (� d1, � d2, d3)
q3 q4 (� 3/2þ 2y, 2� 2y, � 1/2) J1 (� d2, d3, d1)
q3 q4þ (0, 0, 1) (� 3/2þ 2y, 2� 2y, 1/2) J1 (� d2, d3, � d1)

q1 q4þ (0, 1, 1) (� 1/2, 5/2� 2y, 2� 2y) J2 d01; d
0
2; d

0
3

� �
q1 q3þ (1, 0, 1) (2� 2y, � 1/2, 5/2� 2y) J2 d03; d

0
1; d

0
2

� �
q1 q2þ (1, 1, 0) (5/2� 2y, 2� 2y, � 1/2) J2 d02; d

0
3; d

0
1

� �
q1 q2þ (1, 1, 1) (5/2� 2y, 2� 2y, 1/2) J2 d02; d

0
3; � d01

� �
q1 q3þ (1, 1, 1) (2� 2y, 1/2, 5/2� 2y) J2 d03; � d01; d

0
2

� �
q1 q4þ (1, 1, 1) (1/2, 5/2� 2y, 2� 2y) J2 � d01; d

0
2; d

0
3

� �
q2 q3� (0, 1, 0) (� 1/2, � 5/2þ 2y, 2� 2y) J2 d01; � d02; d

0
3

� �
q2 q4þ (0, � 1, 1) (� 2þ 2y, � 1/2, 5/2� 2y) J2 � d03; d

0
1; d

0
2

� �
q2 q4þ (0, 0, 1) (� 2þ 2y, 1/2, 5/2� 2y) J2 � d03; � d01; d

0
2

� �
q2 q3þ (1, � 1, 0) (1/2, � 5/2þ 2y, 2� 2y) J2 � d01; � d02; d

0
3

� �
q3 q4� (1, 0, 0) (� 5/2þ 2y, 2� 2y, � 1/2) J2 � d02; d

0
3; d

0
1

� �
q3 q4þ (� 1, 0, 1) (� 5/2þ 2y, 2� 2y, 1/2) J2 � d02; d

0
3; � d01

� �
NN, nearest-neighbour; NNN, next-nearest-neighbour.
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particularly strong since xpJ1,2. Minimizing equation (5) with
respect to Lm gives

L1 ¼ ax@zFx þkFy; ax@zFy � kFx; ax@zFz
� �

=j;

L2 ¼ ax@yFx �kFz; ax@yFy; ax@yFz þkFx
� �

=j;

L3 ¼ ax@xFx; ax@xFy þkFz; ax@xFz �kFy
� �

=j:

ð7Þ

So the AFM modes follow adiabatically the twisting of the F
field, leading to a characteristic AFM indentation of the double-
twisted skyrmionic textures (Fig. 1e,f). This AFM superstructure
will be discussed further below in relation to experiments.

Integrating out the AFM canting modes gives the effective
energy density for the total magnetization alone:

E0
totðFÞ ¼

1
2
wFF

2 � a2J 0ðrFÞ2 þ aD0F � r�F; ð8Þ

where wF¼ 3jþ 2k2/j, J 0 ¼J � x2/(2j), and D0 ¼Dþkx/j.
So we find that both D and J are renormalized by the
antiferromagnetic canting. Importantly, x2/jpJ1,2, so we expect a
large renormalization for the elastic constant J . Indeed, we find
(Table 2, with spin-mixing) J 0 ¼ � 11.19 K, almost two and a
half times smaller than J ¼ � 27.10K. Intuitively, this reduction
can be understood by the AFM nature of the canting modes
which disrupts the dominant FM correlations. Turning to
the twisting parameter, we find (Table 2, with spin-mixing)
D¼ 1.27K and D0 ¼ � 2.46K. So not only is D0 larger than D,
but it also has the opposite sign. This means that the canting
modes change the magnetic handedness of the system, an
important piece of information which can be accessed experi-
mentally (see Discussion).

Finally, with the characteristic diameter L0 of the double-
twisted skyrmion structures being 2p/|Q0| (this distance coincides
with the helix period in the helical phase15), with wavenumber
Q0 ¼ D0

2J 0
1
a, the calculated magnetic constants result in a helix

period of (Table 2, with spin-mixing) L0C50.89 nm, which is in
striking agreement with the experimentally measured15 value
LexpC50 nm. Thus, these numbers give a very satisfactory
estimate of the effective chiral DM couplings given that they
are describing a weak spin-relativistic exchange effect, which is
greatly modified by the complicated internal canting of the spin
structure in Cu2OSeO3.

Dzyaloshinskii model. To calculate the magnetic phase diagram
we need to go one step further and include entropic effects and
further anisotropies beyond the DM interactions. In the follow-
ing, we cast the theory in terms of the total magnetization per
volume M(r)¼Msat(0)F, where Msat(0) is the magnetization
density in the field-aligned, ferrimagnetic (1/2 plateau) state at
T¼ 0. At the atomic level, Msat(0)¼ 4gmB/a3, where g is the
electronic spectroscopic factor of the Cu2þ ions, while experi-
mentally16, the corresponding magnetization is 0.531mB per Cu
atom, which amounts to Msat(0)¼ 111.348 kAm� 1.

The phenomenological free energy density can be decomposed
into three contributions,

f ¼ fe þ fa þ fL: ð9Þ
The first contribution fe contains the last two terms of (8) and

the Zeeman energy,

fe ¼ A rMð Þ2 þBM � r�M�H �M; ð10Þ
where H is the internal magnetic field, A¼ � kBJ 0/aMsat(0)2 and
B¼ kBDexp/(aMsat(0))2, where we readjust the DM parameter so
that the experimental helix period Lexp¼ 4pA/B is reproduced.
The second term of equation (9) holds the anisotropic couplings
beyond the DM contributions. For a cubic crystal, the leading
terms,

fa ¼ A0
X
i

ð@iMiÞ2 þK1½ðMxMyÞ2 þðMyMzÞ2 þðMzMxÞ2�

þK2 MxMyMz
� �2

;

ð11Þ

describe the exchange anisotropy A0 and the cubic magneto-
crystalline anisotropies K1 and K2. Finally, the third term of
equation (9) collects the leading homogeneous free energy terms,
which can be written as the usual Landau expansion for the order
parameter field M,

fL ¼ a T �T0
C

� �
M2 þ bM4; ð12Þ

where T0
C is the Curie temperature in the absence of DM

couplings or anisotropies. The parameters T0
C, a, b, A0, K1 and K2

can be estimated with a minimum of empirical additional
information from experiment in conjunction with QMC data,
following the procedure outlined in the Methods section. The
resulting estimates are listed in Table 4.

From these parameters we can derive two key quantities of
basic experimental interest. The first is the temperature range of
the so-called precursor region12,25–27,

DT ¼ B2=ðaAÞ; ð13Þ
where two main effects take place. First, the double-twisted core
of skyrmions is energetically favourable and is stabilized at
T ¼ T0

C þDT=2, while the helical ground state sets in only at
T0
C þDT=4, and second, the chiral twisting is accompanied by

strong longitudinal modulations of the magnetization M. Hence,
anomalous skyrmionic spin-textures can be expected within this
temperature range. The model parameters yield an estimate
DTC1.04K, in good agreement with the interval of about 2K in
which the so-called ‘A-phases’ appear under magnetic field in
Cu2OSeO3 crystals28,29. Given the crude representation of the
thermodynamic potential term in the continuum theory by the
Landau expansion, this value gives only the order or magnitude of
the expected effects.

The second key quantity of interest is the characteristic field
strength of the Dzyaloshinskii model,

HD ¼ B2Msat 0ð Þ=A ; ð14Þ
which sets the scale for the unwinding of the chirally twisted
helical state into the field-aligned state. With coefficients from
Table 4, a value HDC0.34 T is found. In turn, this gives the
critical field for the closing of the cone state by a continuous spin-
flip, Hc2¼HD/2C0.17 T. Again, these values are in good
agreement with experiment (see Methods section).

Magnetization process and phase diagram. With all this in
place, we can fully determine the equilibrium two-dimensional
solutions using micromagnetic simulations (see Methods
section)12,25. Figure 4 illustrates the magnetization processes for
two different directions of the applied field for constant
temperature-depending magnetization Msat 0ð Þ 1� T=T0

C

� �� �1=3
.

Table 4 | Parameters of the Dzyaloshinskii model.

Parameter Value Units

A 4.85� 10� 23 JmA� 2

B � 1.22� 10� 14 JA� 2

a 2.94� 10�6 TmA� 1 K� 1

TC
0 58.0 K

b 3.77� 10� 15 Tm3A� 3

K1 1.0� 10� 16 JmA�4
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The corresponding characteristic plateau fields Hp for the
transition between the conical helix and the field-aligned state
are shown in Fig. 5a. For fields along [100], the continuous
transition from the conical helix state into the field-enforced
ferrimagnetic state is found at Hc2C80mT at 50K, in very good
agreement with experimental data.

The high-temperature region of the phase diagram is magnified
in Fig. 5b to focus on the precursor region close to TC, where
skyrmionic cores are energetically more favourable compared
with one-dimensional helix solutions12,25. Here we find two

competing skyrmionic phases (Fig. 5c–f). The first one (Fig. 5c,e)
is the standard field-driven ‘�p’-skyrmion phase of Fig. 1b with
the radial skyrmions ordered in a hexagonal lattice10,11. The
second (Fig. 5d,f) is the ‘p/2’-skyrmion state of Fig. 1c, which
actually is the stable state at zero and low fields, because the
fractionalization of skyrmions into half-skyrmions yields a higher
packing density of the energetically advantageous skyrmionic
cores.

It should be noted that the stability regions of condensed
skyrmion phases may be underestimated compared with conical
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and helicoidal one-dimensional states, as the parallel packing of
skyrmionic strings may eventually lower its energy by undergoing
a further twisting in the third spatial direction, amounting to a
non-trivial conformation of the strings25. Furthermore, thermal
fluctuations may enhance the stability of skyrmionic phases as
they may acquire large configurational entropic contributions
compared with the ideal crystalline long-range ordered states,
similar to liquids of polymer strings or condensed vortex-matter
phases in type-II superconductors.

Discussion
The splitting of defects or of solitonic entities emerges in different
research fields13,14,30–32. Yet, for the Dzyaloshinskii models of
chiral magnets, a detailed theoretical understanding of the full
range of possible textures is still lacking. The main reason
is that the splitting of solitons and defect formation relies on a
delicate balance between core-energies of solitons and their
mutual interactions. In this regard, the emergence of the half-
skyrmion phase in the vicinity of the ‘�p’-skyrmion lattice of
Cu2OSeO3 opens a new venue to study the properties of textures
with split topological units in experiment. The occurrence
of this phase at low fields near the ordering transition
should be traceable by thermodynamic measurements
revealing further phase transitions in very narrow regions of
the precursor range DT. Indeed, experimental indications for
the presence of more than one mesophase in the precursor
region has been reported from macroscopic thermodynamic
measurements in the related chiral compounds with B20-
structure26,33,34, and in Cu2OSeO3 itself28,35. Whether one of
the phases observed is related to the half-skyrmion phase
remains experimentally open, however, and requires further
dedicated investigations.

To this end, we note that half-skyrmionic phases feature a
sizeable longitudinal modulation of the order parameter, and
contain defects like hedgehogs or narrow line or wall defects,
where the magnetic order parameter M passes through zero.
Hence, these textures are expected to display wide distributions of
the quasi-static or ordered local magnetic moments, which could
be discernible by local probes, such as mSR and NMR, and used as
a signature of the half-skyrmion phase. The defected arrangement
of partial skyrmions may also be detected by examining the
higher harmonics in the diffraction data. While the finite
extension of the radial solitonic cores requires the harmonic
contents of a lattice arrangement to display all higher harmonic
modes, the dense arrangement of skyrmionic cores and defects in
a condensed phase of partial skyrmions will exacerbate these
anharmonic effects.

Besides the interplay of skyrmion and half-skyrmion phases,
the preceding analysis gives several additional important predic-
tions. The first prediction hinges on the observation that the
essential magnetic building blocks being weakly coupled, St¼ 1
tetrahedra has profound ramifications for the magnetic excitation
spectrum. It implies that the discrete spin-multiplet excitation
spectrum of the four strongly coupled tetrahedron spins
(consisting of two total singlets, two triplets and a quintet, see
Fig. 2c) is largely preserved in the translationally invariant system.
Therefore, besides the canonical Goldstone mode, a distinct set of
weakly dispersive high-energy magnetic excitation modes should
appear, where the highest mode goes up to an energy of B450K.
The detailed form of this structure has been reported by
Romhányi et al.23, using a fully quantum-mechanical multi-
boson expansion. Quite remarkably, this structure was firmly
established very recently by Ozerov et al.36, using high-field
electron spin resonance experiments with a terahertz free electron
laser source. The characteristic dispersions associated with the

hierarchy of magnetic interactions in Cu2OSeO3 can be further
probed by inelastic neutron scattering.

The second experimental consequence of the conceptual
framework for skyrmion formation in Cu2OSeO3 that we have
established here is a canting of the four magnetic sublattices in
the trillium lattice. This is similar in spirit to MnSi37, but in
Cu2OSeO3 the canting must lead to a weakly antiferromagnetic
modification of the primary ferrimagnetic order parameter that is
related to the long-range ordering of the St¼ 1 tetrahedron spins.
This weak antiferromagnetism in Cu2OSeO3 is the dual
counterpart of the weak ferromagnetism that is present in
chiral acentric bipartite antiferromagnets38. The presence of this
antiferromagnetic superstructure implies that in neutron (or
resonant x-ray) diffraction experiments there be an additional set
of corresponding magnetic Bragg peaks. Establishing their
presence experimentally will prove that the skyrmions in
Cu2OSeO3, which have a typical length scale of B50 nm, carry
an extra antiferromagnetic spin-modulation on a length scale
more than two orders of magnitude smaller (Fig. 1e,f).

We have also shown that the canting has a strong influence on
the primary order parameter, on account of a sizeable cross-
coupling mechanism. Besides the renormalization of the helix
period, this coupling actually reverses the magnetic handedness of
the system, a key aspect that can be confirmed experimentally
with polarized neutrons39–44. Indeed, while preparing the final
version of our manuscript, we became aware of a new
experimental study by Dyadkin et al.45, which confirms our
theoretical prediction for the sign of the magnetic handedness of
Cu2OSeO3.

Methods
Choice of enantiomer. All our calculations were done for the enantiomer defined
by the following crystallographic positions of the Cu sites (in units of the lattice

Cu(1)

St1
St2

J1

St1
St2

J2

Cu(1) Cu(2)

Cu(2) J AF
O...O

J AF
W

Cu(2) Cu(2)

J1 = –l1l2(J AF + J AF    )W O...O

J FM
W J2 = l 2 J FM

W2

Figure 6 | Exchange couplings between effective tetrahedral entities.

(a) Illustration of how the bare couplings JAFW and JAFO:::O of the S¼ 1/2 model

give rise to an effective nearest-neighbour (NN) coupling J1 between

tetrahedra. The constants l1 and l2 are given in the text and depend on

whether one includes the spin-mixing effect or not. The spins of the two

effective tetrahedra involved in this coupling are denoted by St1 and St2 . In

the S¼ 1/2 model, different microscopic couplings are denoted by different

line styles, while blue (red) colour generally refers to ferromagnetic

(antiferromagnetic) exchange. The coupling JAFO:::O involves a longer-range

O-Se-O super-exchange path along the diagonals of hexagonal loops (here

only half of such a loop is visible), which are formed by alternating JAFS � JAFW
bonds (the Se sites reside at the centre of these loops). (b) Similarly for the

NNN coupling J2, where the two tetrahedra are connected via a single bare

coupling, JFMW .

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6376

8 NATURE COMMUNICATIONS | 5:5376 |DOI: 10.1038/ncomms6376 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


constant a¼ 8.91113Å):

r1 ¼ ðy; y; yÞ; r2 ¼ ð3=2� y; 1� y; y� 1=2Þ;
r3 ¼ ð1� y; y� 1=2; 3=2� yÞ; r4 ¼ ðy� 1=2; 3=2� y; 1� yÞ;
r5 ¼ ða; b; cÞ;r6 ¼ ðb; c; aÞ;
r7¼ c; a; bð Þ; r8¼ 1� a; bþ 1=2; 3=2� cð Þ;
r9 ¼ ðbþ 1=2; 3=2� c; 1� aÞ; r10 ¼ ð3=2� c; 1� a; bþ 1=2Þ;
r11 ¼ ðaþ 1=2; 1=2� b; 1� cÞ;r12 ¼ ð1=2� b; 1� c; aþ 1=2Þ;
r13 ¼ ð1� c; aþ 1=2; 1=2� bÞ;r14 ¼ ð1=2� a; 1� b; c� 1=2Þ;
r15 ¼ ð1� b; c� 1=2; 1=2� aÞ;r16 ¼ ðc� 1=2; 1=2� a; 1� bÞ;

ð15Þ

where y¼ 0.88557, a¼ 0.13479, b¼ 0.12096 and c¼ 0.87267. The first four are the
Cu(1) sites (Wyckoff positions 4a) and the remaining ones are the Cu(2) sites
(general 12b positions). In the convention used in MnSi crystals (with Mn atoms
corresponding to Cu(1) atoms in Cu2OSeO3), this is the right-handed enantiomer.
The positive value of the wavevector Q0 (Table 2) then means that in Cu2OSeO3,
the magnetic structure displays the same chirality with the crystal structure, in
agreement with the new experimental study of Dyadkin et al.45

Ab initio calculations. DFT calculations were performed using fplo version 9.07
(ref. 46) based on an extended set of local orbitals and VASP version 5.2
(refs 47,48) employing the projector-augmented wave method. For DFT
calculations, we adopt the experimental structural data from Table 1 of ref. 20,
without performing additional relaxations of unit cell parameters and atomic
coordinates. For the exchange and correlation potential, we used the GGA (PBE96)
parameterization. The k-meshes were checked for convergence. Relevant couplings
(Supplementary Table 1) were evaluated by mapping the GGA band structure
(Supplementary Fig. 4) onto the Cu-centered Wannier functions. Isotropic
(anisotropic) magnetic exchange couplings were evaluated using scalar-relativistic
(full relativistic) spin-polarized DFTþU total energy calculations, adopting
Ud¼ 10.5 eV and 9.5 eV for Cu(1) and Cu(2), respectively. Further details on the
computational method are provided in Supplementary Methods.

QMC simulations. QMC simulations of thermodynamical behaviour were done
using the code loop from the software package ALPS version 1.3 (ref. 49).
Simulations were performed on finite lattices of 8,192 spins S¼ 1/2 using periodic
boundary conditions, with 40,000 sweeps for thermalization and 400,000 sweeps
after thermalization.

Triplet-quintet spin-mixing. We first summarize the main spectral features of an
isolated ‘strong’ tetrahedron. This is described by the spin Hamiltonian (modulo an
overall constant),

H0 ¼
1
2
JAFS S2 þ 1

2
ðJFMS � JAFS ÞS2123 ; ð16Þ

where S123 is the total spin quantum number of the Cu(2) sites, S4 is the Cu(1) spin,
and S¼ S123þ S4 is the total spin. Thus the spectrum can be labelled by the good
quantum numbers |S12, S123, S, MS, where M is the total magnetization. The
eigenspectrum of H0 (Fig. 2c) consists of a ground state triplet |1, 3/2, 1, MS, two
excited singlets |0, 1/2, 0, 0S and |1, 1/2, 0, 0S at energy DE ¼ JAFS � 3JFMS

� �
=2

(measured from from the ground state), a quintet |1, 3/2, 2, MS at DE ¼ 2JAFS and
two triplets |0, 1/2, 1, MS and |1, 1/2, 1, MS at DE ¼ 3 JAFS � JFMS

� �
=2.

The spin-mixing effect amounts to a finite admixture of the quintet state into
the triplet ground state and originates in the weak couplings between the ‘strong’
tetrahedra. To understand this effect, we treat the weak inter-tetrahedral couplings
at the mean-field level which, as shown in ref. 23, is an excellent approximation for
the ground state. The resulting ‘tetrahedral mean-field’ (TMF) theory amounts to
decoupling the bare S¼ 1/2 model into a sum of independent TMF Hamiltonians
with local mean fields acting on the four spins,

HTMF ¼ H0 þ zSz123 þ ZSz4; ð17Þ
where z and Z are self-consistent mean-field parameters,

z ¼ 2JFMW Sz1
� 	

þ JAFW þ JAFO:::O

� �
Sz4
� 	

; Z ¼ 3 JAFW þ JAFO:::O

� �
Sz1
� 	

: ð18Þ
Given that Sz123 and Sz4 do not commute with the total spin S, the mean fields

admix states with different S. The admixed states must however share the same M
and S123, which remain good quantum numbers. It follows that the triplet ground
state is admixed only with the quintet state. In the M¼ 1 manifold {|f1S � |1, 3/2,
1, 1S,|f2S � |1, 3/2, 2, 1S} we have, apart from an overall constant:

Hff1 ;f2g
TMF ¼ ð5z� ZÞ=4

ffiffiffi
3

p
ðz� ZÞ=4ffiffiffi

3
p

ðz� ZÞ=4 2þð3zþ ZÞ=4


 �
: ð19Þ

Solving self-consistently for the ground state of this matrix leads to the local
spin lengths hSzCuð1Þi ’ � 0:38 and hSzCuð2Þi ’ 0:46.

Effective model. As mentioned above, the effective description of Cu2OSeO3 relies
on replacing the magnetically ‘strong’ tetrahedra with effective quantum-
mechanical entities, which by symmetry can be placed on the corresponding Cu(1)

sites, forming a trillium lattice. For the moment, we disregard the spin-mixing
effect, that is, we regard each entity as a faithful spin-1 object (we shall return to
this below).

The first-order coupling between the effective St¼ 1 entities can be found using
equivalent operators

SCu 1ð Þ2t ! � l1St ; SCu 2ð Þ2t ! l2St ; ð20Þ

where the spin lengths l1,2 can be found from (2): l1¼ 1/4 and l2¼ 5/12. A close
inspection of the structure reveals that there are two types of bonds between
effective spins St1 and St2 (Fig. 6), one where the tetrahedra t1 and t2 are connected
via two weak Cu(1)-Cu(2) couplings, JAFW and JAFO:::O, and another where they are
connected via a weak Cu(2)-Cu(2) coupling JFMW . In the trillium lattice, St1 and St2
are, respectively, NN and NNN sites, and the corresponding couplings from first-
order perturbation theory are

J1 ¼ � l1l2 JAFW þ JAFO:::O

� �
; J2 ¼ l22 J

FM
W : ð21Þ

To check the adequacy of first-order perturbation theory, we have pushed the
expansion up to second order. We found that the second-order corrections are
Jð2Þ1 =JAFS ’ � 1:6�10� 3, Jð2Þ2 =JAFS ’ 4:1�10� 3, an order of magnitude weaker
than the first-order contributions, and so we can safely disregard them for all
practical purposes. For completeness we should also note that in second order there
appears an effective bi-quadratic exchange term of the form JQ St1 � St2ð Þ2. The
corresponding NN and NNN coefficients are also extremely small
(JQ;1=JAFS ’ 1:09�10� 3, JQ;2=JAFS ’ 2:64�10� 3) and can be safely disregarded.

Next, we treat the DM couplings, beginning with the ones within the strong
tetrahedra, namely DFM

S and DAF
S . It turns out that all diagonal matrix elements of

these couplings within the ground state triplet manifold vanish by symmetry and
so, to lowest order, DFM

S and DAF
S do not have any role at all (this remains true with

spin-mixing present as well). In other words, the double-twisting mechanism
responsible for the appearance of the helical and the skyrmion lattice phase
originates in the DM couplings between the strong tetrahedra. The first-order effect
of the latter can be treated in exactly the same way as the exchange couplings.
Again there are only two independent DM couplings, one for NN and another for
NNN bonds of the trillium lattice. By symmetry, we can write all DM couplings in
terms of the two vectors of equation (4), see Table 3.

To find the latter, we use Table 3 and proceed as follows. The bond {q1, q8}
maps to the bond {q1, q3þ (1,0,0)} in the effective lattice. So, the first-order
contribution from DAF

W to the effective DM vector Dr1 ;r3 þ 1;0;0ð Þ ¼ d3; d1; d2ð Þ is
� l1l2Dr1 ;r8 . Similarly, the bond {q4, q12} maps to {q4, q2}, and thus the
contribution from DAF

O:::O to the effective DM vector Dr4 ;r2 ¼ d3; d1; � d2ð Þ is
� l1l2Dr4 ;r12 . Altogether,

ðd1; d2; d3Þ ¼� l1l2 Dy
r1 ;r8

;Dz
r1 ;r8

;Dx
r1 ;r8

� 

þ Dy

r4 ;r12
; �Dz

r4 ;r12
;Dx

r4 ;r12

� 
h i
:

ð22Þ
Finally, the two Cu(2) sites {q5, q12} map to {q1, q2þ (1,1,0)}, up to a primitive

translation. Hence, Dr1 ;r2 þ 1;1;0ð Þ ¼ d02; d
0
3; d

0
1

� �
equals l22Dr5 ;r12 , that is,

d01; d
0
2; d

0
3

� �
¼ l22 Dz

r5 ;r12
;Dx

r5 ;r12
;Dy

r5 ;r12

� 

ð23Þ

Let us now incorporate the ground-state spin-mixing effect discussed above.
Due to this spin-mixing, the operators St do not satisfy the commutation relations
of spins, but they can still be thought of as vector operators of length one. The first-
order perturbation theory in the ground state of equation (19) amounts to simply
replacing the local spin lengths l1 ! l01 ¼ 0:38 and l2 ! l02 ¼ 0:46 in the above
first-order expressions. Table 2 lists the resulting values of various parameters of
the model with and without spin-mixing.

Continuum limit of the effective model. Here we briefly outline the basic steps
and assumptions leading to equation (5). Our approach follows the standard route
of Taylor expanding the magnetic energy in the long-wavelength limit. Namely,

Si Rþ qið Þ ¼ 1þ qi � rð Þþ 1
2

qi � rð Þ2 þ :::

� �
Si Rð Þ; ð24Þ

for an effective entity at Rþ ri, where R labels the Bravais positions in the trillium
lattice. In the next step, we express Si(R) in terms of F(R) and Lm(R) (see above),
and collect all terms resulting from the 24 exchange and 24 DM anisotropy terms
per unit cell, which requires performing a number of lattice summations (see
Supplementary Methods, Sec. 4). Next, given that the ferromagnetic mode F is the
dominant one, we disregard quadratic terms in Lm, as well as terms of the type a
DijLmqF or a2DijLmq2F. The latter scale, respectively, as D3

J2 F
2 and D4

J3 F
2 since

Lm / a@F / D
J F, see equation (7). Essentially, this amounts to collecting all energy

terms up to OðD2

J F
2Þ. Disregarding unimportant boundary terms then leads to

equation (5), which is invariant under the symmetry group P213 of the crystal, and
in particular under the three-fold rotation around q1, which takes (x, y, z) - (z, x, y)
in spin space, and (q2, q3, q4) - (q3, q4, q2) (see coordinates above), or its
equivalent form (F, L1, L2, L3) - (F, L2, L3, L1).

The present approach is different from the one followed in ref. 50 for the
~J1�~J2�~J3 model on MnSi (which has the same lattice with our effective model). We
first remark that in the crystal structure of Cu2OSeO3, the quantity
x�1� y¼ 0.11443o1/8, while in MnSi x¼ 0.13841/8. This means that the
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second (third) neighbour bonds in Cu2OSeO3 correspond to third (second)
neighbour bonds in MnSi (at x¼ 1/8, the two bond types have the same distance).
So to apply the results of ref. 50 to our case, we must replace ~J2 ! 0 and ~J3 ! J2 in
the expressions of ref. 50. With these replacements, the resulting expressions for J
and D are identical with the first two lines of equation (6), but with the important
difference that 1� y is replaced by a quantity that depends nonlinearly on the
exchange couplings, see ref. 50 for further details. This leads to very different
numerical values for J and D and a helix period LC1514 nm, which is too large
compared with the experimental Lexp¼ 50 nm (ref. 15).

Parameters of the Dzyaloshinskii model. The parameters T0
C, a and b (Table 4)

were extracted by fitting the mean-field equation of state for the net magnetization
M¼ |M| in the vicinity of the ordering temperature (where the effect of fa can be
disregarded, see below),

H ¼ 2a T �T0
C

� �
Mþ 4bM3; ð25Þ

to the QMC data, Fig. 3, in appropriate ranges 40 KoTo60 K and Ho5 T. For the
anisotropic parameters of fa, the empirical data from experiment show sizeable and
positive K1, and negligible K2 and A0 . This can be seen from the reported16

anisotropic behaviour of the spin-flip field Hc2, which corresponds to the
unwinding of the chirally twisted helical state into the field-aligned state: At
temperatures below B(2/3)TC, Hc2 becomes anisotropic, with the [100]-direction
as easy axis and the [111]-direction as hard axis. The splitting between hard and
easy axis directions, DHc2 ¼ H 111½ �

c2 �H 100½ �
c2 , reaches B0.04 T at low

temperatures16. This behaviour can be qualitatively understood by noting that the
effect of K1 sets in when the magnetization tends towards saturation, and if the
exchange anisotropy A0 is relatively much smaller (the latter has been checked
independently by ab initio calculations at the atomic level). That the value of K1 is
sizeable can be also seen by the remarkably high fields Hc1 B0.02–0.035 T (ref. 16),
corresponding to the helix reorientation transition from the helicoidal states or a
multi-domain helix state into the conical helix state, that is, the flopping of the
helix in field direction. As the ratio Hc2/Hc1 is not small, also the ratio between
anisotropy and DM-coupling is expected to be sizeable. One source of K1 comes
from the magnetoelectric effect but, as shown in the Supplementary Methods (Sec.
3) based on the experimental magnetoelectric data16, this contribution is too small
to account for the experimental data. Here, the numerical value of K1 (Table 4) has
been adjusted to reproduce the field Hc2 in the (100) field direction.

The quality of these numbers can be appreciated by a comparison with
experiment. Magnetization data on single crystals show that Hc2 does not depend
significantly on the applied field direction for T435K (refs 16,29,35). In this range,
we can also use the isotropically averaged magnetization data on polycrystalline
samples20, which give Hc2C73mT at T¼ 50K. At the same temperature, single
crystal magnetization data give estimates Hc2C68 and 70mT for fields in [100] and
[� 554] direction, respectively, after the demagnetization corrections16, while
magnetization data on another single crystal gives Hc2C60, 58 and 56mT for field
directions [100], [110] and [111], respectively35. Other data by Adams et al.29

report higher values H½111�
c2 ð50KÞ ’ 75mT (ref. 29), while Seki et al.15 report

H½111�
c2 ð50KÞ ’ 120mT. Some of the deviations may be traced back to

demagnetization corrections, but the model is seen to be in reasonable agreement
with the experimental facts.

Micromagnetic calculations. The determination of equilibrium states for the
completed Dzyaloshinskii continuum model requires energy minimization of the
free energy density functional of equation (9). The calculation of modulated
states including the cubic anisotropy with coefficient K1 as given in Table 4
has been performed by numerical micromagnetic calculations using finite
difference discretization with adjustable grid spacings and periodic boundary
conditions. Energy minimization used simulated annealing for the search of
initial solutions and a relaxation and grid refinement. In this way, two-dimen-
sional equilibrium solutions have been calculated (In Fig. 5, the ‘� p’-Skyrmion
lattice is the solution for H¼ 7mT and T¼ 58.1 K, while the ‘p/2’-lattice is
the solution for H¼ 4mT and T¼ 58.7 K.) These solutions are constrained
approximations to three-dimensional textures composed of skyrmionic strings,
as they represent states with homogeneous spin structure in the third spatial
direction.
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