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CpG island-mediated global gene regulatory
modes in mouse embryonic stem cells
Samuel Beck1, Bum-Kyu Lee1, Catherine Rhee1, Jawon Song2, Andrew J. Woo3 & Jonghwan Kim1,4,5

Both transcriptional and epigenetic regulations are fundamental for the control of eukaryotic

gene expression. Here we perform a compendium analysis of 4200 large sequencing data

sets to elucidate the regulatory logic of global gene expression programs in mouse embryonic

stem (ES) cells. We define four major classes of DNA-binding proteins (Core, PRC, MYC and

CTCF) based on their target co-occupancy, and discover reciprocal regulation between the

MYC and PRC classes for the activity of nearly all genes under the control of the CpG island

(CGI)-containing promoters. This CGI-dependent regulatory mode explains the functional

segregation between CGI-containing and CGI-less genes during early development. By

defining active enhancers based on the co-occupancy of the Core class, we further demon-

strate their additive roles in CGI-containing gene expression and cell type-specific roles in

CGI-less gene expression. Altogether, our analyses provide novel insights into previously

unknown CGI-dependent global gene regulatory modes.

DOI: 10.1038/ncomms6490 OPEN

1 Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA. 2 Texas Advanced Computing Center, The University of
Texas at Austin, Austin, Texas 78758, USA. 3 School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth,
WA 6000, Australia. 4 Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA. 5 Center for Systems
and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA. Correspondence and requests for materials should be addressed to J.K.
(email: jonghwankim@mail.utexas.edu).

NATURE COMMUNICATIONS | 5:5490 | DOI: 10.1038/ncomms6490 |www.nature.com/naturecommunications 1

& 2014 Macmillan Publishers Limited. All rights reserved.

mailto:jonghwankim@mail.utexas.edu
http://www.nature.com/naturecommunications


T
he precise control of global gene expression programs is
governed by multi-layered regulatory steps that include
transcriptional1,2 and epigenetic3,4 regulation. Both

processes are mediated by the combinatorial actions of hundreds
of trans-acting DNA-binding proteins (DBPs)5 and numerous
target cis-regulatory elements1. Recent advances in high-
throughput technologies, such as massive parallel sequencing in
combination with chromatin immunoprecipitation (ChIP-seq) and
gene expression profiling (RNA-seq), have enabled researchers to
identify unbiased genome-wide interactions between DBPs and
their genomic target loci, and further enlighten the functional
outcomes. Not only the acquisition but also comprehensive
analyses of large data sets have become crucial for elucidating
the elaborate regulatory mechanisms of global gene expression6.

Transcriptional regulation has been suggested as one of the key
steps in maintaining the identity of embryonic stem (ES) cells
represented by two terms: self-renewal and pluripotency7. In
addition to the identification of core transcription factors (TFs),
such as OCT4, SOX2 and NANOG8–11, subsequent studies on the
expansion of transcriptional regulatory circuitry have suggested
that global gene expression regulation in ES cells is achieved by
functionally separable regulatory sub-modules12,13. This modular
regulation requires close interactions between multiple DBPs
including TFs and chromatin regulators and a distinct set of their
chromosomal targets. This cooperative modular action not only
underscores the importance of studying multiple DBPs within
specific regulatory units but also elucidates the significance of the
systematic identification of their genomic targets and associated
chromatin or DNA modification states.

CpG islands (CGIs) are DNA elements with high GC contents,
existing mostly without DNA methylation, and surrounding
460% of the transcriptional start sites (TSSs) of eukaryotic
genes14,15. Early genomic sequencing analysis has shown that
CGIs exist invariably on almost all housekeeping genes and less
frequently on tissue-specific genes16–18. Although CGIs have been
previously suggested as one of the important regulatory elements
influencing the transcriptional activity of many genes19,20, only a
few CGI-specific binding DBPs, such as KDM2A, CFP1 and
TET1 (refs 21–23), have recently been identified. Therefore, the
functional significance of CGI-mediated transcriptional and
epigenetic regulations is only beginning to be understood.
Comprehensive and systematic approaches to understanding
the differences between CGI-containing (CGIþ ) and CGI-less
(CGI� ) promoters in their associated gene expression patterns,
global regulatory mechanisms and functional implications have
not been clearly demonstrated.

In order to elucidate how DBPs interact with and precisely
control the cis-regulatory elements over gene expression
programs in ES cells especially within the context of CGIs, we
conducted an integrative analysis of publicly available data sets
with our new data incorporating the DBP occupancies, histone

modification signatures, chromatin accessibility and DNA
methylation. The tested DBPs were classified into multiple sub-
groups based on their target co-occupancy. Strikingly, we found
predominant regulation in CGIþ promoters by the MYC and
polycomb repressive complex (PRC)-related DBPs. This CGI-
dependent regulatory mode further explains the functional
segregation between the CGI-containing and CGI-less genes
during early embryonic development. We also defined the active
enhancers by the Core class DBPs, and showed that these
enhancers regulate cell type-specific gene expression programs in
ES cells. In summary, our findings provide novel insights into
CGI-dependent global gene regulatory modes in ES cells,
characterized by the general regulation of CGIþ promoters by
the MYC and PRC classes, and the tissue-specific regulation of
CGI� genes by enhancer binding Core class DBPs.

Results
Co-occupancy guided classification of DBPs. Previous studies
on ES cells have shown the cooperative regulation of DBPs on
their common targets7,13,24. In order to obtain further insights
into DBP-mediated transcriptional regulation in ES cells, 166
genome-wide DBP occupancy data sets were initially tested (157
publicly available ChIP-seq and 9 newly acquired from the
bioChIP-seq24; Supplementary Dataset 1), and we selected 105
high-quality data sets to classify DBPs based on their target co-
occupancy on the genome (Supplementary Dataset 2 and
Methods section). As a result, we observed six distinct DBP
classes and named them based on the representative factors
within each class (Core, PRC, MYC, CTCF, REST and P53;
Fig. 1a). The Core, PRC and MYC classes were similar to our
prior observations12 with additional DBPs, and we identified
three new classes (CTCF, REST and P53; Fig. 1a and
Supplementary Dataset 2). Notably, the MYC class included the
elongation factors25 and general TFs, in addition to other
previously known DBPs12,13. The CTCF class consisted of
insulator protein, CTCF and cohesion complex members. In
addition to four major classes (Core, PRC, MYC and CTCF;
Fig. 1a), two small classes, P53 and REST, showed unique binding
patterns, indicative of their distinct roles in ES cells (Fig. 1a). We
noticed that some DBPs shared targets across multiple classes, for
instance, TET1 (ref. 22) and KDM2A (ref. 21) shared targets with
DBPs in the PRC and MYC classes. The mediators26,27 and
elongation factors28 in the Core class also shared binding sites
with the members of the MYC class (Fig. 1a and Supplementary
Fig. 1a), implying that these are functionally important in
connecting multiple classes of DBPs.

As shown in Supplementary Fig. 1b,c, we observed a positive
correlation between the co-occupancy and the strength of the
DBP binding only within the same class of DBPs, suggesting that
DBPs from the same class function cooperatively. As previously

Figure 1 | Co-occupancy guided identification of DBP classes and their associated chromatin status. (a) Co-occupancy guided classifications of DBPs.

Heatmap shows six distinctive clusters (colour-coded bars) from an unsupervised hierarchical clustering of co-occupancies for 105 DBPs. Representative

DBPs and their putative functions are shown below. The extent of co-occupancy between two DBPs was monitored with the deviation of actual co-

occupancy from randomized expectation (Z-score, see Methods section). Red: Core class (19 DBPs, 29 experiments), blue: PRC class (7 DBPs, 21

experiments), green: MYC class (18 DBPs, 22 experiments), black: CTCF class (6 DBPs, 21 experiments), cyan: P53 class (single DBP, 2 experiments) and

yellow: RESTclass (single DBP, 4 experiments). (b) Distance distribution of DBP-binding sites from transcriptional start sites (TSSs). DBPs are listed in the

same order as in Fig. 1a. Note that DBP-binding sites in the PRC and MYC classes are generally enriched nearby TSSs, while the binding sites of the

Core and CTCF classes are further away from TSSs. (c) Association of each DBP class with a unique chromatin status. Each colour-coded bar graph,

excluding me-CpG, shows the portion containing a specific histone mark or DNase I hypersensitivity (y axis) within the given DBP-binding sites

(x axis, same order as in Fig. 1a). Me-CpG (grey) indicates the average portion (y axis) of CpG methylation within the given DBP-binding sites (x axis).

Genome-wide average portion of CpG methylation (0.6474) is shown with a grey dashed line. (d) Association of increased co-occupancy of DBPs

within the class with specific histone marks. The portions containing chromatin marks or percentage of CpG methylation (y axis) within the centre (300bp)

of the region co-occupied by indicated number of DBPs (x axis) are plotted with different colour as indicated in Fig. 1c.
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reported, the PRC and MYC classes generally occupy sites near
TSSs, whereas the Core and CTCF classes generally localize
further away from the TSSs, suggesting a unique proximal or
distal regulatory mode for each class (Fig. 1b). Since the target
occupancy of DBPs is often associated with specific chromatin
marks29–31, we examined the association between the co-
occupancy of DBPs and 10 histone modification signatures,
chromatin accessibility (DNase I hypersensitivity regions, DHRs)
or DNA methylation (Supplementary Dataset 3 and Fig. 1c,d).
The Core class targets were highly enriched in DHRs with a
putative enhancer histone signature, H3K4me1 (ref. 31). The
MYC class preferentially bound to DHRs with the active histone
markers, H3K4me3 and H3K27ac. The binding regions of the
PRC class harboured both active (H3K4me3) and repressive
(H3K27me3) markers as previously reported19,29. Interestingly,
we found that the PRC class binding regions are mainly within
DHRs, implying that unlike in previous reports32,33, chromatin
condensation is not an absolute requirement for PRC-mediated
gene repression. The binding sites of all four major classes are
enriched within the DHRs with the depletion of DNA
methylation (Fig. 1c,d). Taken together, our results show that
DBPs within the same class share many common regulatory
features and that each class may have a distinct role in global gene
regulation.

The MYC and PRC classes predominantly occupy CGIþ
promoters. As shown in Fig. 1a, our analysis revealed that

previously reported CGI-binding proteins, such as KDM2A
(ref. 21) and TET1 (ref. 22), share targets with the MYC and PRC
classes. In addition to a prior report that suggested the CGI-
dependent regulation of PRC1/2 (ref. 29), our data imply that
CGIs may be equipped to control local gene activity in
combination with specific DBPs15. Since the MYC and PRC
classes tend to occupy proximal promoter regions among the
multiple DBP classes we defined (Fig. 1a,b), we hypothesized that
the major roles of the MYC and PRC classes are restricted to
CGIþ promoters. To test this hypothesis, we examined the
extent of the global target occupancy of DBPs in all classes on the
CGIþ and CGI� promoters (Fig. 2a). Markedly, most DBPs in
the MYC and PRC classes showed a strong occupancy on the
CGIþ promoters only (Fig. 2a and Supplementary Fig. 2).
Subsequent tests for global gene expression showed that the gene
activity under the control of the CGIþ promoters (hereafter,
CGIþ genes) is significantly higher than the activity of genes
with CGI� promoters (CGI� genes; Fig. 2b). Further testing of
the gene expression profiles from 91 tissue samples34 revealed
that the overall levels of the CGIþ genes are much higher than
the levels of the CGI� genes (Fig. 2c). These results suggest a
general ‘on’ state of the CGIþ genes in ES cells. The expression
of the CGI� genes, however, was skewed to a minimum value in
most samples, while being selectively active in a few samples,
indicating a general ‘silent’ and a context-dependent ‘on’ state of
the CGI� genes. Taken together, these findings strongly suggest
two CGI-dependent modes of global gene regulation: one for
CGIþ genes and the other for CGI� genes.
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The MYC and PRC classes determine the activity of CGIþ
genes. We found that up to 99.4% (11,667 out of 11,738) of all
CGIþ genes are occupied by at least one factor from either the
MYC or PRC class, while o10% of the CGI� genes are their
targets (Fig. 3a and Supplementary Fig. 3a). As expected, the
activity of the CGIþ genes showed a positive correlation with
MYC class co-occupancy and a negative correlation with the PRC
class (Fig. 3a,b). In accordance with this observation, the active
CGIþ genes harboured high levels of MYC-associated active
histone markers, such as H3K4me3 and H3K27ac, whereas the
inactive CGIþ promoters harboured repressive H3K27me3
markers (Fig. 3a,c, see also Fig. 1c,d and Supplementary Fig. 4a).
Only a small number of highly active CGI� genes showed a
marginal level of MYC class binding with active histone markers
(Fig. 3a and Supplementary Fig. 4a). Collectively, these results
suggest that there is selective regulation of CGIþ genes by
the MYC and PRC classes. In agreement with prior reports

of non-linear target gene amplification35,36 and RNA polymerase
II (Pol II) release of Myc25 as well as the direct inhibition
of target gene expression by disassembling the Pol II
pre-initiation complex by PRC37, our analyses indicate that
the activity of nearly all CGIþ genes can be generally
explained by the reciprocal regulation between the MYC and
PRC classes (Fig. 3b).

Functional separation between the CGIþ and CGI� genes.
Our analyses revealed that there are marked differences in global
gene activity, DBP occupancy and histone signatures between
CGIþ and CGI� genes (Figs 2 and 3). Although more tissue-
specific activity of CGI� genes was previously suggested17,38, the
functional segregation between CGIþ and CGI� genes has not
been systematically addressed. To address this issue, we looked
into gene expression variations across different tissue samples34
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by performing two independent hierarchical clustering analyses
of the CGIþ and CGI� genes (Fig. 4a,b; see Methods section).
Among the CGIþ genes, large groups of gene clusters (gene sets;
numbers in black) were co-regulated and synchronously activated
in the tissues from the same developmental origins (Fig. 4a). In
contrast, the clustering of the CGI� genes generated smaller
gene clusters (numbers in red) within a limited number of tissues
(Fig. 4b).

We then performed gene set overlap tests (see Methods
section) to understand the functional implications of the CGI

context in developmental stages and tissue specificity, by
comparing the gene sets defined from the clustering analyses
(Fig. 4a,b) with previously identified active gene sets during
development (Gene Expression Database)39. The comparison
revealed that the gene sets acquired from the CGIþ genes are
frequently activated throughout early embryonic development,
whereas the gene sets from the CGI� genes mostly remained
silent (Fig. 4c). Likewise, the comparison of the gene clusters with
the previously known mutant phenotypes (Mouse Genome
Informatics, MGI)40 showed that the loss of CGIþ genes often
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led to embryonic lethality (Fig. 4d). However, the comparison
with the tissue-specific gene lists in the adult mouse (Unigene)
showed that tissue-specific expression is more distinctive in
CGI� genes (Fig. 4e). Collectively, our integrative analysis
provides clear evidence showing that there are functionally
separated CGI-dependent regulatory modes (Figs 2 and 3). Many
active CGIþ genes are required for general cellular processes
with a basal level of gene activity, whereas the mostly silent
CGI� genes are selectively activated in more specialized cell
types or tissues.

The Core class selectively defines active enhancers. Among
various strategies for identifying enhancers, co-occupancy map-
ping of a cluster of TFs has been suggested as the most reliable
method with fewer false positives and negatives41. Our own
analyses also showed that DBPs in the Core class occupy distal
regulatory regions with a high level of H3K4me1, the marker used
for the chromatin signature of enhancers (Fig. 1c,d). Since the
Core class DBPs share many common targets with the factors
known to occupy enhancer elements including mediators (MED1
and MED12) as well as co-activators (P300, LSD1 and CHD7)
(Fig. 1a and Supplementary Fig. 1a)27,42, we sought to define
the enhancers using the co-occupancy of the Core class DBPs in
ES cells.

We mapped the enhancers along with a number of the co-
occupied Core class TFs. To determine the appropriate threshold
for mapping reliable enhancers, we compared P300 signals, a
representative enhancer mark, from the enhancers we defined
based on the co-occupancy of the Core class DBPs and the
enhancers defined by other enhancer annotation methods43–47.
The regions co-occupied by six or more DBPs of the Core class
showed more than twofold higher P300 signals than any of the
other enhancers defined by the prior methods43–47

(Supplementary Fig. 5a), indicating that our enhancer-defining
method outperforms the other widely used methods. Using the
co-occupancy criterion of at least six DBPs, we defined 8,726
putative enhancers (Fig. 5a and Supplementary Dataset 4, see also
Methods section) spanning an average of 1.6 kb long, and
preferentially localizing to distal regions (median 25.9 kb from
TSS). The majority of the enhancers we defined are within DNase
I-hypersensitive regions (Fig. 5a), while a large portion of the
enhancers defined by the other methods reside within non-
accessible regions, which is indicative of false positives or inactive
enhancers (Supplementary Fig. 5b). Similar to recent
observations26, we found some enhancers spanning up to
longer than 5 kb (253 enhancers; Fig. 5b). We observed a
positive correlation between the co-occupancy of the Core class
and the activity of their associated genes (hereafter, enhancer
target genes; Fig. 5c) or the binding signal of the co-activators or
mediators (Fig. 5d).

Recent reports suggested that H3K27me3 can serve as a marker
for ‘poised’ enhancers41,43. Interestingly, we found that the
H3K27me3 signature is almost completely depleted in the
enhancers defined by the Core class. Since they still harboured
both H3K4me1 and H3K27ac markers (Figs 1d and 5a),
these findings suggest that the DBPs in the Core class
exclusively occupy active enhancers, but not the poised
enhancers in ES cells.

Although the Core class factors generally occupy distal cis-
regulatory elements (Fig. 1b), some of the enhancers we defined
reside near proximal promoters (Fig. 5e), and we found 376 genes
associated with multiple enhancers: proximal (within 1 kb of TSS)
and distal (within 20 kb of TSS) enhancers (Supplementary
Dataset 5). Interestingly, these genes are more active than
other genes solely associated with proximal enhancers, distal

enhancers, super-enhancers26 or regulatory elements mapped by
chromatin interaction analysis with paired-end tagging48 (Fig. 5f).
Notably, these multiple enhancer-associated genes include many
ES cell-specific regulators, such as Oct4, Nanog, Sox2 and
Lin28a (Supplementary Fig. 6a), and the loss of these genes
preferentially leads to early developmental failure (Supplementary
Fig. 6b), indicating that multiple enhancer-associated genes play
important roles in controlling the identity of ES cells.

Enhancer binding regulators are critical for CGI� genes. We
showed that the reciprocal regulation between the MYC and
PRC classes is predominant in CGIþ genes and controls the
general activity of almost all CGIþ genes (Fig. 3). Since
enhancers have been suggested as a critical regulatory component
driving cell type- or tissue-specific gene expression46,49,
we sought to elucidate the general roles of enhancers in
CGI-dependent global gene regulation. As shown in Fig. 6a, the
co-occupancy of the MYC and PRC classes showed strong
positive and negative correlations, respectively, with the activity
of only CGIþ genes. However, the co-occupancy of the Core
class DBPs showed a similar positive correlation with the
activities of the CGIþ and CGI� genes, indicating that the
enhancers defined by the Core class are responsible for the
activity of the CGIþ and CGI� target genes. Since CGIþ genes
are generally active in various cell types (Fig. 2c), these results
signify that enhancers play additive roles in the activity of their
CGIþ target genes, but more decisive roles in the activity of
CGI� target genes.

In order to further delineate the functional significance of
enhancers in the regulation of CGI� genes, we examined the
activity of enhancer-associated genes and targets of OCT4, a
representative enhancer binding master regulator from the
Core class, upon knockout of Oct4 (Fig. 6b and Supplementary
Fig. 7). The activities of the CGIþ and CGI� genes
associated with the enhancers (upper) and OCT4 (bottom) were
reduced upon two different perturbations, suggesting that
enhancers (or OCT4) regulate both CGIþ and CGI� target
genes. However, the extent of the expression decrease was
significantly larger in the CGI� targets, confirming the more
specific roles of enhancers in the CGI� target genes. We further
examined the effects of enhancer binding master regulators on
their targets in other cell types46: FOXA2 in liver cells, PU.1
in B cells and MYOD in C2C12 cells (Fig. 6c). For both CGIþ
and CGI� genes, the overall activity of the genes associated
with the master regulator was greater than the activity of the
genes not associated with the master regulator. However, we
consistently observed significantly more activity from the CGI�
genes regulated by master regulators, whereas the non-target
CGI� genes showed almost no detectable activity (Fig. 6c). Since
CGIþ genes are generally active throughout various cell types
(Fig. 2c), our results not only indicate that enhancers
synergistically increase the activity of CGIþ target genes but
also illustrate that enhancer-mediated transcriptional regulation
is more critical for the activity of CGI� target genes. Consistent
with this, ectopic expression of MyoD in fibroblasts led to
significant global induction of the CGI� target genes, whereas
the CGIþ target genes did not show a significantly unified
response (Fig. 6d).

We further examined the activity of CGIþ and CGI� genes
in ES versus liver cells. For CGIþ genes, the expression profiles
of the ES and liver cells showed a strong positive correlation,
indicating that the activity of many CGIþ genes is similar in
both cell types. Although mildly skewed towards their tissue of
origin, CGIþ genes that are targets of tissue-specific enhancer
binding proteins (OCT4 for ES and FOXA2 for liver cells) also
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showed a similar expression pattern (Fig. 6e, left panel). For the
CGI� genes, in contrast, the overall distribution of the gene
expression profile was highly biased towards each axis, demon-
strating the tissue-specific nature of the gene activity. Moreover,
the CGI� targets of OCT4 or FOXA2 showed strong

tissue-biased gene expression patterns (Fig. 6e, right panel).
Taken together, our analysis strongly indicates that the enhancer
binding proteins play roles in determining tissue-specific gene
expression programs for the CGI� target genes, while these
proteins play additive roles for the CGIþ target genes.
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Discussion
We performed a compendium analysis, integrating various DBP
occupancies and chromatin status data sets, to elucidate global
regulatory mechanisms in the context of CGI. After mapping

multiple DBP classes based on co-occupancy, we revealed
predominant reciprocal regulation between the MYC and PRC
classes on CGIþ genes (Figs 2 and 3). We also showed the roles
of the ES cell-specific enhancers defined by the Core class on
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CGIþ and CGI� genes, revealing the CGI-dependent modes of
global gene regulation in ES cells and other cell types (Fig. 6f).

Unlike previous reports19,30, we found that a large portion of
the CGIþ promoters remained bivalent even in differentiated
tissues (Supplementary Fig. 3b), suggesting that the reciprocal
regulation of CGIþ genes by the MYC and PRC classes may be a
common feature shared in other cellular contexts. Although many
inactive CGIþ promoters harbour H3K27me3 markers, the
majority of the CGI� genes are silenced without a H3K27me3
marker in the ES cells and other differentiated tissues that we
tested (Supplementary Fig. 4a,b). This ‘by-default silent’ state of
the CGI� genes may allow the efficient management of limited
resources in the cells, since most of these genes are not
abundantly expressed or critical during the early developmental
stages (Fig. 4c,d). This observation also indicates the necessity of
the PRC-independent repression mechanism for the CGI�
promoters. The unique mode of gene silencing on CGI�
promoters possibly mediated by methyl-DNA-binding proteins
will be of great interest for future studies (Supplementary Fig. 4c).

Consistent with previous reports showing the enrichment of
tissue-specific DBP recognition motifs in the distal regulatory
elements of CGI� genes38, we showed that the enhancer binding
proteins govern tissue-specific CGI� gene expression programs.
This is also consistent with the recent report of ‘super-enhancers’
occupied by master regulators that control cell type-specific gene
expression26. The super-enhancers reported in ES cells, in turn,
fall into the subset of enhancers we defined in this study
(Supplementary Fig. 5c). Since tissue-specific CGI� gene
expression programs turn on in parallel with terminal
differentiation (Fig. 4e), further understanding of tissue-specific
gene regulation mediated by enhancer binding master regulators,
particularly in CGI� genes, would be helpful for developing
more direct methods of controlling cell fates through induced
trans-differentiation or direct reprogramming.

Taken together, our compendium analyses provide a concep-
tually unique perspective in understanding the global gene
regulatory mechanisms. We used DBPs to define regulatory
classes based on their target co-occupancy. Such defined classes
then serve as powerful analytical tools in interrogating the global
gene regulatory modes in ES cells with additional large data sets.
Our analyses reiterate a unifying view of global transcriptional
and epigenetic regulatory modes, especially incorporating CGIs as
a crucial regulatory portal in determining general or tissue type-
specific gene expression programs.

Methods
Cell cultures. Mouse J1 ES cell lines were maintained as described previously24. In
detail, cells were maintained in ES medium (Dulbecco’s modified Eagle’s medium)
supplemented with 15% fetal calf serum, 0.1mM b-mercaptoethanol, 2mM
L-glutamine, 0.1mM non-essential amino acid, 1% of nucleoside mix (100� stock,
Millipore), 1,000Uml� 1 recombinant leukaemia inhibitory factor (Chemicon)
and 50Uml� 1 penicillin/streptomycin).

ChIP-seq. ChIP assays were performed as described previously24. Flag-bio tagged
ES cells (Supplementary Datasets 1,2) were fixed in 1% formaldehyde for 7min at
room temperature. The formaldehyde was quenched using final 125mM glycine
before harvesting cells. Sonicated chromatin extracts containing DNA fragments
were immunoprecipitated using streptavidin-conjugated magnetic beads
(Dynabeads MyOne Streptavidin T1). After washing and reverse crosslinking,
purified ChIP DNA was applied for generation of sequencing libraries.

Published ChIP-seq data analysis. ChIP-seq data from mouse ES cells published
before 19 Dec 2012 were downloaded from Sequence Read Archive (SRA) in
National Center for Biotechnology Information (NCBI) database. Downloaded
data are listed in Supplementary Dataset 1 (DNA-binding proteins) and
Supplementary Dataset 3 (chromatin status). FASTQ files were extracted with the
SRA Toolkit version 2.1.6 and aligned using Bowtie 2.1.0 (ref. 50) onto the mouse
genome (mm9, NCBI Build 37). For the identification of DBP-binding sites
(Supplementary Dataset 1), model-based analysis for ChIP-seq peak caller (MACS

1.4.2; ref. 51) was used with a dynamic local lambda calculation and building
shifting model with a P value cutoff of 1e� 5. Regions containing specific histone
marks (Supplementary Dataset 3) were identified with random Poisson distribution
without a local lambda calculation or building the peak shape shifting model. For
each peak calling, author-provided control ChIP-seq data were used to remove the
background noise. For the experiments performed without any control ChIP
reactions, sequencing data from whole-cell extract (GSM307154) were used as a
universal control.

For the multiple ChIP-seq experiments for a single DBP (Supplementary
Datasets 1,6), histone modification or DNase I hypersensitivity (Supplementary
Dataset 3), ChIP-seq experiments carried out at different laboratories were treated
as biological replicates and those from the same laboratory were treated as
technical replicates. For technical replicates, only intersection regions of peaks from
all replicates were used. On the other hand, for biological replicates, consensus peak
regions from at least two experiments performed in different laboratories were used
for the subsequent peak based analyses or identifications of DBP co-occupied
regions (Fig. 1c (y axis), Fig. 1d (y axis), Fig. 3a (MYC and PRC class co-
occupancies), Figs 3c and 5a (Core class co-occupancy), Figs 5a–d (x axis), Fig. 6a
(y axis) and Supplementary Figs 1b,c, 3a,b and 5a,b (x axis)).

Filtering low-quality ChIP-seq data. To monitor the quality of DBP ChIP-seq
data, a signal-to-noise ratio (SNR) was calculated from duplicate read filtered
bedGraph files generated by MACS for each ChIP-seq data as follows:

SNR¼ [area under signal curve within peak regions]/[area under signal curve
outside of peak regions].

After filtering out all low-quality data with a stringent filtering criterion of
40.015 SNR, a total of 105 high-quality DBP ChIP-seq data out of 166 tested were
used for the further analyses (Supplementary Dataset 2).

CpG methylation analysis. For the mouse ES cells CpG methylation data used in
Fig. 1c,d, bisulfite sequencing data from GSM1127953 (ref. 52) was used. In order
to evaluate methylation status, FASTQ files were aligned with Bismark 0.10.0 and
methylation was monitored with methylation extractor software53. Overall CpG
methylation status in DBP peaks (Fig. 1c) or DBP co-occupied regions (Fig. 1d)
were calculated by averaging methylation portions of all called CpG sequence
within given regions.

Comparison of DBP co-occupancy. The degree of co-occupancy between two
DBPs shown in Fig. 1a was measured with the deviation of observed co-occupancy
from the expected values determined by randomization. In detail, the binding sites
of a DBP were randomly shuffled for 1,000 times with shuffleBed software in
BEDtools suite v2.17.0 (ref. 54). In order to avoid bias arising from unmappable
repetitive sequences, shuffling was performed only within the genomic regions
occupied by at least one DBP. Moreover, to minimize the noise derived from the
sex determining chromosome (chrY) used in ChIP-seq experiments, only the peaks
in the X and somatic chromosomes were used. For each randomization, the length
distribution of each DBP co-occupied region was monitored, and the Z-score
representing the extent of co-occupancy was calculated from the mean and s.d. of
expected length of co-occupied regions.

Annotation of multiple DBP target loci and associated chromatin modification
marks. For the identification of DBP co-occupied regions, DBP-bound regions
within a class defined in Fig. 1a were merged using mergeBed software in
BEDtools suite v2.17.0 (ref. 54). In order to examine the association of these DBP
co-occupied regions with chromatin modification (Fig. 1d), histone marks were
examined within the 300-bp regions from the centre of the merged peaks.

Classification of promoters with CGI. CGI promoters were defined as regions
containing any pre-defined CGI elements within a ±500-bp region from the TSSs
of all annotated genes. In order to minimize false annotations, two CGI lists,
determined by independent methods18,55 were used to map consensus CGIþ or
CGI� promoter. In case of the gene containing multiple TSSs, only a single TSS
showing the highest expression value in RNA-seq (GSM1005490; ref. 56) was used
for the further analysis, to minimize the noise from rarely expressed minor
transcripts.

RNA-seq analysis. RNA-seq data from mouse ES cells (GSM1005490; ref. 56)
were downloaded from SRA. FASTQ files were aligned to the mouse genome
(mm9, NCBI Build 37) using TopHat57. For the ENCODE RNA-seq data sets58,59

(ES cells, adult liver, B cell and C2C12 in Fig. 6c), aligned bam files were
downloaded and used. Gene expression was calculated as reads per kilobase per
million (RPKM; single-end sequencing data, GSM1005490) or fragments per
kilobase per million (FPKM; paired-end sequencing data, ENCODE) values using
Cufflinks60. As ranges of RPKM values span over three orders of magnitude and
tend to give high random multiplicative error in high expression values, expression
values were converted into log10 scale (log10(RPKMþ 1)) to collapse the original
range for graphical summarization.
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Microarray analysis. As a unified gene expression profile of diverse tissues and
cell lines shown in Figs 2c and 4, microarray data from GNF (Genomics Institute of
the Novartis Research Foundation) Mouse Gene Atlas V3 (GSE10246; ref. 34) were
used. For the precise monitoring of expression values, raw data files (.cel files) were
background-corrected and normalized with Robust Multi-Array expression
measure using sequence information (GCRMA)61 methods to minimize the
background signal originate from probe sequence or high GC contents. For genes
with multiple probesets, only probes with maximal signal were used for the further
analyses. For the clustering analysis shown in Fig. 4a,b, the average expression
value from biological replicates was calculated in a natural scale, and each
expression value was converted into a Z-score and clustered by unsupervised
hierarchical clustering method using Xcluster software (http://www.stanford.edu/
group/sherlocklab/cluster.html). For the expression data upon knock out of the
Oct4 gene shown in Fig. 6b and Supplementary Fig. 7, the microarray data set from
GSE10477 (ref. 62) was downloaded and normalized with the Robust Multi-array
Average63 method. For the expression data upon induction of MYOD in mouse
embryonic fibroblast cell in Fig. 6d, the microarray data set from GSE6487 (ref. 64)
was used

Signal density normalization of ChIP-seq profiling. The read density of each
ChIP-seq data was normalized to show the data in the same scale. For each ChIP-
seq data, total area under the signal curve from duplicate read filtered bedGraph
files generated by MACS was considered as one billion (1� 109). As a result,
normalized signal density was shown as signal per billion as follows:

Normalized signal density¼ area under signal curve within region� 109/total
area under signal curve

Representative ChIP-seq density profile analysis. For the ChIP-seq density
profile analyses (Fig. 3a (excluding MYC and PRC class co-occupancies), Figs 3b
and 5a (excluding Core class co-occupancy), Fig. 5d (y axis), Fig. 5e and
Supplementary Figs 4a,c and 5a (y axis)), the following ChIP-seq data listed below
were used as the representative one: H3 (GSM594580), H3K4me3 (GSM590111),
H3K27me3 (GSM747539), H3K27ac (GSM851278), H3K4me1 (GSM845243), Pol
II (GSM632040), OCT4 (GSM307137), NANOG (GSM307140), SOX2
(GSM288347), P300 (GSM723018), LSD1 (GSM637282), CHD7 (GSM558674),
MED1 (GSM560348) and MED12 (GSM560345).

Calculation of DBP-binding enrichment. In order to calculate the DBP-binding
enrichment of a gene, log10 ratio of normalized tag density from a DBP ChIP-seq
over the control ChIP-seq was used as follows:

DBP-binding enrichment¼ log10 {(normalized DBP ChIP signal in areaþ 1)/
(normalized control ChIP signal in areaþ 1)}.

For the MYC and PRC class enrichment shown in Fig. 3b, median enrichment
values among 18 MYC class DBPs and 5 PRC class DBPs (excluding TET1 and
KDM2A from the PRC class in Fig. 1a) were used, respectively.

TSS state mapping. Based on the existence19 (Supplementary Fig. 3b) of
H3K4me3 and H3K27me3 marks within a 1 kb (±500 bp) region surrounding the
TSSs, the promoters of all protein-coding genes were classified into four classes of
histone status as follows; active (H3K4me3þ , H3K27me3� ), bivalent
(H3K4me3þ , H3K27me3þ ), repressive (H3K4me3� , H3K27me3þ ) and non-
marked (H3K4me3� and H3K27me3� ).

Gene set overlap test. The list of expression verified genes during development
(Fig. 4c) was downloaded from Gene Expression Database on the MGI website
(http://www.informatics.jax.org/expression.shtml)39. Functional annotation of
genes (GOBP; Supplementary Fig. 6a) was downloaded from the Gene Ontology
website (http://www.geneontology.org/)65. Genes involved in embryonic lethality
(Fig. 4d) upon mutation and gene–phenotype relations (Supplementary Fig. 6b)
were extracted from genotypes and mammalian phenotype annotations on the
MGI website40. Tissue-specific gene lists (Fig. 4e) were downloaded from the
Unigene website (http://www.ncbi.nlm.nih.gov/unigene). Gene set overlap tests
were performed with hypergeometric distribution analysis using software R (http://
www.r-project.org/). For multiple testing correction, hypergeometric probabilities
were corrected by Benjamini and Hochberg66 false discovery rate. When the
overlaps between two gene sets were overrepresented or underrepresented
compared with expectations, they were considered as enriched or depleted,
respectively.

Definition of previously defined enhancers. Active and poised (Supplementary
Fig. 5a,b) enhancers were determined as previously described43. In detail, P300
peaks containing H3K4me1, but not H3K4me3 marks, were divided into two
groups based on the presence of H3K27me3. Previously identified active and
poised enhancers46, as well as Enh elements45, were downloaded from the
Supplementary Data provided by the authors; their genomic coordinates were
converted into the mouse genome (mm9, NCBI Build 37) using Liftover software
(http://genome.ucsc.edu/util.html). ChromHMM47 enhancer elements were

identified by running ChromHMM software with 10 histone modifications and
chromatin accessibility defined in Fig. 1c (excluding me-CpG).

Mapping of enhancer/DBP target genes. To map the target genes of DBPs or
enhancers, genes that are occupied by DBPs or enhancer (Supplementary
Dataset 4) within ±5 kb from their TSSs were considered as the target genes
(Figs 5c and 6a–e). For the mapping of gene that are regulated by multiple
enhancers (Fig. 5f), genes containing both proximal (±1 kb from TSSs) and distal
(±20 kb from TSSs) enhancers were used. Genes directly interacting with
enhancers or OCT4-bound regions (Fig. 5f and Supplementary Fig. 7) were
mapped using RNA pol II chromatin interaction analysis with paired-end tagging
data from GSM1084137 (ref. 48).

Data sets for tissue-specific enhancer binding DBPs. Target loci of tissue-
specific DBPs in Fig. 6c were identified using following data. OCT4 (GSM288354;
ref. 13), FOXA2 (GSM717562 and GSM717563; ref. 67), PU.1 (GSM537989; ref.
68) and MYOD (SRP001761; ref. 69).
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