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Evolutionary triage governs fitness in driver and
passenger mutations and suggests targeting never
mutations
R.A. Gatenby1, J.J. Cunningham1 & J.S. Brown2

Genetic and epigenetic changes in cancer cells are typically divided into ‘drivers’ and

‘passengers’. Drug development strategies target driver mutations, but inter- and

intratumoral heterogeneity usually results in emergence of resistance. Here we model

intratumoral evolution in the context of a fecundity/survivorship trade-off. Simulations

demonstrate that the fitness value of any genetic change is not fixed but dependent on

evolutionary triage governed by initial cell properties, current selection forces and prior

genotypic/phenotypic trajectories. We demonstrate that spatial variations in molecular

properties of tumour cells are the result of changes in environmental selection forces such as

blood flow. Simulated therapies targeting fitness-increasing (driver) mutations usually

decrease the tumour burden but almost inevitably fail due to population heterogeneity.

An alternative strategy targets gene mutations that are never observed. Because up or

downregulation of these genes unconditionally reduces cellular fitness, they are eliminated by

evolutionary triage but can be exploited for targeted therapy.
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T
he transition from normal to malignant phenotype during
carcinogenesis, often described as ‘somatic evolution,’ is
associated with the accumulation of genetic (and epige-

netic) mutations1–4 but typically demonstrates convergence to
common phenotypic properties (the cancer ‘hallmarks’5).
Mutations are commonly characterized as a ‘driver’ or
‘passenger’ depending on the contributions to proliferation and
invasion6,7. Targeted therapies can produce significant tumour
response by disrupting driver mutations. However, not all
tumours have identifiable and/or drugable driver mutations and
response to targeted therapy, even when the driver mutation is
present, is usually transient as resistant phenotypes repopulate the
tumour8.

Here we investigate genetic heterogeneity, phenotypic conver-
gence, the conventional binary classification of driver/passenger
mutations and corresponding targeted therapy in the context of
Darwinian dynamics. This extends ongoing efforts to understand
cancer from first principles on the basis of evolution by natural
selection9–11, including the classical trade-offs observed in
Darwinian systems. Here, we consider a multi-loci diallelic
model of mutation and selection within a finite population of
tumour cells evolving along a well-defined adaptive landscape.

In examining the evolutionary dynamics during carcinogenesis,
we assume that normal epithelial cells exist in an evolutionary
and ecological state well below their maximal carrying capacity
and individual evolutionary potential for survival and prolifera-
tion. That is, normal cells carry out their differentiated tasks for
maintaining whole organism function and their population
density, survival and proliferation is entirely controlled by tissue
signals. Ecologically, a new cancer cell lineage begins with
abundant available space (the lumen of a duct, for example) and
is initially free from the life history trade-off of proliferation
versus survivorship. Evolutionarily, the tumour lineage develops a
self-defined fitness function, and then uses the human genome to
evolve strategies to enhance survival and/or proliferation.
Consistent with the fundamental laws of evolution, each
population may initially undergo exponential proliferation but
is ultimately ecologically constrained by the limitations of
substrate and space. Here, the evolutionary trajectory reaches
the classical Darwinian life history trade-off12,13, in which cancer
cells must invest limited available resources in some combination
of survival and fecundity that maximizes fitness within the
context of their environment. These phenotypic strategies are
apparent in the consistent convergence to the ‘hallmarks’ of
cancer.

We use in silico simulations based on Darwinian first principles
and classical evolutionary trade-offs to investigate the genomic
dynamics that are both a cause and consequence of tumour
development and progression. Our specific interests focus on the
conventional designation of driver and passenger mutations,
the source of observed spatial intratumoral heterogeneity, and the
dynamics of tumour response and resistance to targeted therapies.

Our results demonstrate that the fitness value of most genetic
and epigenetic events are contextual and depend on extant
environmental selection forces, other local populations and the
prior evolutionary arc of the cell—dynamics that we collectively
describe as ‘evolutionary triage.’ We find that, as a result of
evolutionary triage, the same mutation can act as passenger or
driver depending on context. In a stable microenvironment,
evolutionary triage will reduce tumour cell diversity so that the
observed intratumoral molecular heterogeneity is largely due to
the variations in local selection pressures caused by, for example,
blood flow. Our results demonstrate a previously unrecognized
therapeutic target—‘never’ mutations. That is, when a gene is
never or rarely observed to be mutated, we must conclude that up
or downregulation of that gene unconditionally reduces cell

fitness. We demonstrate that targeting never genes can be a highly
effective therapeutic strategy.

Results
Evolutionary triage. Pooling genetic data from the 225 carcino-
genesis simulations, we observed 3,334 unique genotypes
(5.09% of all possible genotypes) within the evolving cancers.
Although the model randomly imposed mutations on each
gene, the frequency with which each mutation was observable in
the tumour was strongly influenced by its associated fitness
change—a phenomenon we term ‘evolutionary triage.’

The observed frequency of neutral mutations is 0.6% per
generation and at least one neutral mutation is found inB25% of
the cells in the final tumour populations. Thus, the observed
frequency of passenger mutations per generation permits, as
expected, a reasonable estimate of the actual mutation rate (which
was 1% in our simulations). In some simulations, a neutral allele
‘hitchhiked’ with a successful mutation and formed temporary
linkage disequilibrium (Figs 1 and 2) so that it was present in a
frequency greater than expected.

In Fig. 1, we demonstrate that the fitness advantage gained by
mutations (green) conferring an increase in fecundity and/or
survival allowed the cells with these mutations to proliferate more
frequently. Consistent with the clinical observations, driver genes
are observed with far higher frequency (up to 92%) in the final
tumour populations although with considerable variability.

Finally, mutations in genes (red) that resulted in a decrease of
survival and or fecundity were observed during all of our
simulations but became extinct quickly due to the fitness
disadvantage. Their frequency in the final tumour was invariably
near or equal to 0.
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Figure 1 | Evolutionary trajectories and gene prevalence. (a) During

evolution to ESS1 (Evolutionary Stable State 1), the genes highlighted in

green conferred increased fitness depending on the starting initial

phenotype. The genes circled in red, such as gene 1, reduce both fecundity

and survivorship and were never observed in the final simulated cancer

populations. (b) Multiple evolutionary trajectories exist to ESS1 depending

on the initial phenotype. This functional equivalence results in genetic

heterogeneity within and between patients as seen in c. (c) The mutation

prevalence varies greatly depending on the initial phenotype. The orange

line represents the neutral mutation prevalence.
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The basal cancer mutation rate. This study primarily examines
the effects of evolutionary triage variations on the observed
mutation rate in each gene. However, in identifying a basal
mutation rate (Fig. 2), we gained the unexpected insight
that cancer evolution requires a ‘goldilocks’ mutation rate.
Specifically, a mutation rate that is too low (o10� 3) will not
allow adequate exploration of the adaptive landscape and will
result in a small, homogeneous and effectively ‘benign’ tumour.
On the other hand, a mutation rate that is too high (40.1)
produces a mutation-selection balance in which fitness-reducing
mutations occur too rapidly to be eliminated resulting in an
overall decline in fitness and failure to reach the ESS. These
dynamics could potentially be exploited for cancer prevention or
treatment although this is beyond the current scope of the
manuscript.

Intratumoral molecular heterogeneity. In Fig. 3, we quantified
tumour heterogeneity over time using the Simpson’s Index of
Diversity (SID) which gives the probability that two randomly
chosen tumour cells have different genotypes. A value close to 0
indicates very little genetic variability and a value of 1 indicates
that all individuals have a unique genotype.

We used the SID as virtual data in an analysis of variance
between groups (ANOVA) with starting point (three initial
conditions), end point (ESS1, ESS2, ESS2 via ESS1, and
intratumoral areas of ESS1 and ESS2), and generation (35, 60,
100 and 1,000) as independent variables. The analyses were
performed in Systat12 (see Supplementary Table 1). Our virtual
patients were nested within the starting point by end-point
combinations, and we examined the three two-way interactions
between independent variables. All main effects and interaction
effects were significant. This statistical model demonstrates that
B60% (r2¼ 0.588) of the variation between patients can reflect
variations in the properties of the adaptive landscape. However,
patients frequently differed significantly from each other
independent of the starting conditions or ending ESS
(F288,882¼ 1.65, Po0.001), suggesting that early mutations and

evolutionary trajectories remained persistent within a given
patient over time.

Figure 3a demonstrates that increased genetic variability occurs
consistently early in carcinogenesis because the initial population
grows with little inter- or intraspecific competition
(F3,882¼ 19.10, Po0.001). That is, as the early populations
expand into unoccupied space (the lumen of a duct or colon, for
example) any genotype conferring higher fitness than the original
normal population will proliferate. This first phase ends when the
proliferation becomes limited by space and substrate and the
tumour population evolves along the fecundity–survival trade-off
boundary. As shown in Fig. 3, these Darwinian forces selects for
the relatively small number of genotypes that confer maximal
fitness and the population becomes more homogeneous as a small
number of genotype-specific populations dominate. Furthermore,
there is strong selection against any new genotype because no
available strategy is fitter than the extant population. Thus, when
tumour populations reach a fitness maximum, the observed
mutation rate becomes effectively 0.

In contrast, tumours with spatially varying landscapes (in
which, for example, ESS1 and ESS2 (Fig. 3a) exist within the same
tumour) or temporally varying landscapes (in which the entire
tumour transitions from ESS1 to ESS2 (Fig 3c,d)) maintain
increased molecular heterogeneity when compared with a single,
stable ESS environment (F3,288¼ 105.6, Po0.001). These results
suggest that the observed molecular heterogeneity within
tumours, rather than an unpredictable manifestation of random
mutations, is dependent on variations in environmental selection
forces, such as blood flow, and could be observed and predicted
by clinical imaging13.

Evolutionary triage governs driver and passenger mutations.
Driver mutations are defined as those that confer a proliferative
advantage and are causally implicated in carcinogenesis14.
However, the simulation results demonstrate that identifying
true driver mutations from an observed data set is difficult.
Figure 4 shows data from ‘virtual biopsies’ of 25 patient tumours
for 12 possible evolutionary trajectories from normal to cancer.
Although a mutation in every gene is detectable in at least one
patient ‘biopsy’, with the exception of gene 1, many of the
mutations only occur in a minority of the cohort so that only two
to four potential drivers are observed in Z50% of the simulated
patients within each group. These findings are consistent with the
observations of ‘hotspots’ in the cancer genome in which there is
apparently an increased mutation rate15.

Thus, in each case, frequently observed mutations represent
drivers that increase fitness and are causal in the transition of
that cell from normal to cancer. However, in every cohort and in
every tumour, some tumour cells achieved a maximally fit
phenotype through less common combinations that reflect
different genetic trajectories generated by chance or by
environmental variations. For example, the mutation combina-
tion as observed in refs 8,11 confer virtually the same overall
change in fecundity and survivorship as the mutation
combination observed in refs 10,16. In tumours from initial
phenotype 1 to ESS1, mutations 8 and 11 might be incorrectly
viewed as of limited importance because they are relatively
infrequently expressed.

These results are consistent with previously recognized
limitations in the identification of driver mutations from clinical
data sets. However, our model results also demonstrate that
conventional definitions of driver mutations should include an
evolutionary and ecological context. Specifically, we find that the
fitness value of any mutation qualitatively and quantitatively
varies depending on:
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Figure 2 | Effect of different mutation rates. (a) The y axis shows the ratio

between the mean fitness reached by the population after 2,000

generations and the fitness achievable at the ESS (See Fig. 2b). For this

example, we used ESS 1 with a maximum fitness¼0.3). The x axis varies

the mutation rate with units of mutation/cell/division with the lowest value

slightly higher than that of normal cells35. With a low mutation rate, the

evolution is too slow to reach the ESS. As the mutation rate increases

(between 10� 3 and 10� 1), the tumour population evolves to the ESS.

However, at very high mutation rates, the population is unstable and

fitness decreases due to a mutation/selection balance—a phenomenon

predicted by Haldane34. (b) Here, we demonstrate that the diversity (but

not necessarily fitness as shown in panel a) of tumour populations

increases with mutation rate. For the remaining simulations, we chose a

mutation rate of 10� 2 (star) as the midpoint between these trade-offs.
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1. The initial normal phenotype; mutations in gene 4, which is a
‘driver’ for cells originating from initial phenotype 3, are
deleterious or ‘passenger mutations’ for cells originating from
phenotype 1.

2. The local environment both present and past; evolution from
phenotype 2 towards ESS1 selects for mutations in genes 4
and 7, while evolution from the same initial phenotype
towards ESS2 selects for 3, 7, 8, 10 and 16. Gene 16 is strongly
selected when initial phenotype 2 evolves to ESS2 but is rarely
seen in tumours that first evolved to ESS1 and then
transitioned to ESS2.

3. Prior mutational history. From initial phenotype 1 to ESS2,
mutations in genes 15 and 16 confer the greatest fitness
advantage. However, if a mutation in gene 8 first occurs, genes
15 and 16 become deleterious mutations and are not observed
(Supplementary Fig. 1).

Evolutionary triage and targeted therapy. Figures 5 and 6 pre-
sent simulation results from targeted therapy. In Fig. 5, therapy
targets gene 16 which is the most commonly mutated gene in all
evolutionary trajectories (Fig. 4). For example, in simulations of
75 patient tumours evolved from each start point to ESS1, a
complete and prolonged reduction in tumour burden was
achieved in 9%. In 56.0% patients, targeted therapy achieves a
significant response followed by adaptation and proliferation of
resistant populations. In 28.0%, no reduction in tumour volume is
observed although size stabilization with some delay in progres-
sion was observed in 7%. Resistance in our model occurs when
cancer cell lineages that evolved without the target gene (often
sparsely represented in the initial population) gain an adaptive

advantage due to suppression of the dominant population and
proliferate rapidly. Because of supervenience16, alternative gene
combinations replace and then evolve to maximize fitness.

These results for targeted therapy are consistent with clinical
observations and conventional explanations for the results17,18.
Does evolutionary triage suggest an alternative treatment
strategy? Recall that, as a result of evolutionary triage,
mutations that confer a decrease in fitness are virtually never
observed in advanced cancers. We hypothesized that these genes
might represent potential therapeutic targets. In our simulation,
gene 1 confers a negative change in both survivorship and
proliferation. As a result, gene 1 would never be considered a
potential therapeutic target. Figure 6 shows the effect of a therapy
that effectively upregulates gene 1 in a tumour population
originating from initial phenotype 1 to ESS1. We see that the
forced upregulation of this gene can push tumour population
fitness o0 from ESS1 and results in complete extinction of the
tumour population. The success of therapy demonstrates that, for
‘never gene’ targets, every tumour cell is susceptible. Thus,
although the simulations do not demonstrate complete extinction
in every case (because some of the diverse tumour genotypes can
overcome the negative fitness effects), all tumours were
significantly affected.

Interestingly, combinations of therapy targeting driver and
‘never’ mutations were consistently successful in causing
complete tumour eradication because adaptations to the ‘never’
therapy required marked upregulation of one driver gene, in
particular, gene 16 (Fig. 6b). When applying solely the targeted
therapy, only 9% of tumours were completely eradicated.
Remarkably, when all tumours are first given the ‘never gene’
upregulation therapy followed by the targeted therapy on gene 16,
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80% of the tumours were completely eradicated. This is an
example of an evolutionary double bind therapy, where an initial
therapy forces a precise evolutionary reaction, in this case an
upregulation of gene 16, which is specifically treatable by the
secondary therapy19.

Discussion
Our goal in this work is to contribute to the development of a
Darwinian theoretical framework for the large and often
confusing molecular data sets generated by cancer biologists
and oncologists. Recently, Weinberg, writing in a Cell commen-
tary20, observed that the common genetic paradigm of cancer ‘has
reigned supreme for four decades’ but he advocated a ‘move back
to confronting the endless complexity of the disease.’ He
concluded: ‘y it is becoming increasingly apparent that a
precise and truly useful understanding of the behavior of
individual cancer cells and the tumors that they form will only
come once we are able to integrate and then distill these data’. In
a 2013 Nature article21, we wrote, ‘Ultimately, real progress in
understanding cancer biology will require a formal intellectual
framework. Like gravity or quantum field theory in the physical
sciences, we must define the underlying principles governing the
nonlinear dynamics that give rise to the vast and complex data
sets being generated by the creative minds of molecular biologists.
These principles will not be found until we begin to search in the
right place.’

Here we examine Darwinian dynamics as the unifying first
principles of cancer and use a classical evolutionary trade-off to
clarify the molecular heterogeneity found in most cancers. The
proposed evolutionary dynamics are not explicitly genetic. We
focus on phenotypic interactions with environmental selection
forces and view genetics as the ‘mechanism of inheritance.’
However we show that this approach is entirely compatible with
the molecular data and provides both organizing principles and
novel insights.

Our results demonstrate that the extensive genetic data sets
now available in cancer need to be understood in the context of

‘evolutionary triage’ which governs the frequency with which any
molecular property is observed. That is, following a random
genetic or epigenetic change in a cancer cell, proliferation of the
resulting phenotype is dependent on the fitness effect which is, in
turn, governed by the prior genetic trajectory of the cell, local
environmental selection forces, and the extant populations. Thus,
the distribution of observed mutations can be used to understand
and simulate evolutionary and ecological dynamics within a
tumour. Here, we use models based on the evolutionary triage
principle to examine current concepts of driver and passenger
mutations, the source of intratumoral molecular heterogeneity
and the efficacy of targeted therapy.

Our simulations produce molecular heterogeneity within
tumour populations that is similar to clinical observations. Our
simulations demonstrate that this diversity is not an inevitable
result of accumulating mutations but rather a consequence of
variable selection forces due to environmental heterogeneity
caused, for example, by variations in blood flow. In fact, our
simulations find that, due to evolutionary triage, the diversity of
tumour populations and the apparent mutation rate within a
stable region will significantly decline after reaching a fitness
maximum.

Our model also demonstrates that mutations that confer an
increase in fitness will be observed with higher frequency than
those that do not, consistent with the general bimodal classifica-
tion of drivers and passengers. However, we find that accurate
designation of driver or passenger mutation is possible only when
the evolutionary and ecological context is known. That is, some
mutations may be drivers in one environment but not in another.
This context dependence has been experimentally observed in the
Wilms’ tumour 1 (WT1) gene18. Furthermore, the state of the cell
along the genetic trajectory is critical so that a mutation can be a
driver early in the evolutionary process but may not confer an
equal adaptive advantage in later stage cells. In general, this
demonstrates the principle of supervenience or functional
equivalence10,22 in which cancer cells exhibit phenotypic
convergence (that is, the hallmarks) but through multiple
different genetic trajectories resulting in genotype divergence.
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Finally, our results demonstrate that therapy targeted to
commonly observed mutations (regardless of their designation
as driver or passenger) will generally reduce the population and
occasionally produce a complete and prolonged response.
However, uncommon extant populations that achieve maximal
fitness through some other genetic trajectory are virtually always
present and eventually permit tumour progression. This is
consistent with the results of targeted therapies in lung cancer
and melanoma23,24.

Perhaps the most non-intuitive prediction of the evolutionary
triage model is that mutations that are never or rarely observed
may provide a more consistent and durable response. This builds
on prior results that used information theory to demonstrate that
changes in critical genes cannot be observed in a Darwinian
environment25. These mutations are, thus, eliminated by
evolutionary triage because their normal function is necessary
to maintain cancer cell fitness and thus both up and
downregulation unconditionally results in a decrease in fitness.
Interestingly, systematic investigation of knockout mutants in
Escherichia coli found thatB10% of genes were indispensable but
this could vary considerably based on the culture conditions26,27.
This dependence on microenvironmental conditions is consistent
with our general results that the fitness value of a gene (whether
driver, passenger or never) will depend on the critical selection
forces within the environment, which can vary.

To further investigate this, we searched the Cancer Genome
Atlas (TCGA) data sets for genes that are not listed. This
demonstrated that 1,100 genes of 20,000 protein coding genes
(5.5%) are not mutated in any of the TCGA data sets (total of
B4,400 patients). The prediction that targeting never genes can
be an effective therapy will require explicit investigation to
confirm or refute. We do note, however, that while the proximal
components of the MAPK pathway (EGFR, RAS and RAF) are
‘driver’ mutations, gain or loss of function mutations in the distal
components, MEK and ERK, are rarely observed. The obvious
strategy is blocking a never gene and both MEK and ERK
inhibitors are under investigation28,29. However, a less obvious
strategy is upregulating MEK expression. While this initially
seems counter-intuitive, the simple observation that such a
mutation is not observed in cancer suggests that overexpression
of MEK also reduces fitness in a tumour environment (probably
because unmodified proliferative signals will produce mitosis in
inadequate environmental conditions leading to cell death). Our
results suggest a counter-intuitive approach in which therapy that
increase activity of MEK, ERK and other distal components of
pathways may be a highly effective therapy. Finally, our model
also suggests that combination therapies sequentially targeting a
never mutation followed by targeting a compensating driver
mutation may be substantially more effective than either
treatment alone. Finally, we note that sequential therapy
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targeting first a never mutation followed by treatment of a classic
driver phenotype had a high probability of eliminating the entire
cancer population. This is because the tumour cells that were
adapted to the first therapy universally required the driver
mutation to maintain fitness—a therapeutic strategy classified as
‘double bind30’.

Methods
Fecundity and survivorship trade-off. We model carcinogenesis within the
classic evolutionary life history trade-off: fecundity versus survivorship31–34.
This trade-off becomes inevitable in any evolving population. As tumour cell
populations grow and compete, cells can either increase life span through survival
strategies that promote longevity at the cost of a reduced reproduction rate, or
vice-versa. But, simultaneous increase in both is impossible31–33.

A cell’s fitness (per capita growth rate) is given as:

oðS; pÞ ¼ ln 2Spþ 1
2
ð1� SÞpþ Sð1� pÞ

� �
ð1Þ

where S is the probability of surviving, and p is the probability of undergoing cell
division. The term in brackets represent the finite growth rate of a cell on the basis
of its probability of dying and/or dividing in a given time step (often denoted as l
in models of population growth35), and the logarithm of the finite growth rate gives
the instantaneous per cell growth rate,

1
x
dx
dt

¼ lnðlÞ ð2Þ

where x is the population size of tumour cells. The formulation of this fitness
function is described in Fig. 7c. Note S and p combine several cancer ‘hallmarks’5

as p is governed by self-sufficiency from growth signals and insensitivity to
anti-growth signals and S represents evasion from apoptosis and replicative
immortality.

Pre-malignant initial conditions. We chose three different starting values for S
and p (Fig. 7b). They simulate the effects of genetic and epigenetic variability in
normal and pre-malignant cells due to random mutations, environmental factors,
such as chronic inflammation, or germ line variations in different individuals. The
initial values of S and p for these three initial conditions were set to just allow cells
to replace individuals that are lost. This maintains a regulated, stable and sus-
tainable population of normal cells.

Genetic mutations. Normal cells evolve toward a malignant phenotype by sto-
chastically accumulating mutations at any of the 16 gene loci. We treat all gene
mutations as haplotypes and permit just two haplotypes per locus: wild-type
(state of normal cell) or mutated (not present in the normal cells). In the
simulations, 22 genes were examined. Of these, four did not affect either fecundity
or survivorship and served as neutral or passenger genes. Sixteen ‘active’ (i.e.
altered the cell fitness) genes each conferred a unique change in survival, S, and
fecundity, p (Fig. 7a), resulting in (216) 65,536 possible combinations of cumu-
lative changes in S and p (Supplementary Fig. 2), and two genes resulting in
immediate cell death. The computer code used in the study and the raw data from
simulations are available at https://github.com/cunninghamjj/Evolutionary-
triage-in-Cancer. The location of the 16 genes in the fecundity and survivorship
landscape were created using a randomizing algorithm under two rules; (1) four
genes must lie in each quadrant and (2) the range for both fecundity and sur-
vivorship will fall between � 0.2 and 0.2, which is the mean distance between the
values of normal cells and the tumour ESS sites. As shown in Supplementary
Figs 2 and 3, with these methods, 16 active genes were the minimum number
sufficient to allow genetic access to cover the relevant evolutionary adaptive
landscape. Fewer than 16 resulted in patchy inconsistent coverage and more than
16 showed diminishing returns of landscape coverage versus computational
requirement (Supplementary Fig. 3). In multiple simulations, we find that the
locations of these 16 genes will affect the specifics of the results, such as
which genes are ‘drivers’ and which combine to create successful
combinations. However, it does not affect the overall conclusions pertaining to
heterogeneity.

In our simulations, four genes moved the cellular fitness toward higher values
of both S and p and four other genes increase either just fecundity or just
survivorship. These represent potential ‘drivers’ in that they can increase fitness
within the adaptive landscape. More genes could be added at the price of increased
complexity and computational time. However, the simulation seemed consistent
with recent analysis of genomic changes in different cancer types36,37 that found
two to eight driver mutations in most tumours. The other genes either have no
effect (that is, classic passengers) or a negative effect on fitness.

Evolutionary stable strategies. In our model, two maximal fitness [S, p] points
on the [S, p] trade-off boundaries (Fig. 1b) represent different adaptive landscapes
due to, for example, regional variations of blood flow. The boundary is defined by

the following equation:

pa þ Sb ¼ 1 ð3Þ
We view one fitness maximum as a well-vascularized, nutrient-rich area

selecting for greater investment in proliferation (a¼ 1, b¼ 4) resulting in
o (S, p)¼ 0.2996, whereas the second fitness maximum is an area of diminished
blood flow selecting for greater investment in survival (a¼ 3, b¼ 6) resulting
in o (S, p)¼ 0.3005. Evolution from one of the three initial conditions to one of the
two maximal fitness points requires different evolutionary trajectories reflecting
variations in selection pressures. These fitness maxima were not selected arbitrarily
but represent the evolutionarily stable strategies (ESS of Maynard Smith38) that
emerge from letting the tumour cells engage in an evolutionary game in which each
cell’s fitness-maximizing strategy depends upon the strategies of the other cells39.

Two limits are imposed upon the evolving tumours: a carrying capacity and the
fecundity versus survivorship trade-off. The former represents proliferation
limitations due to restrictions in space and substrate and is simulated by randomly
culling cells when the population exceeds its carrying capacity. The latter is
imposed by the fitness landscape (Fig. 7).

Mutation rate. Although simple, we favour this model for three reasons. First, it
follows the pattern of reproduction used by cancer cells, which, as clonal propa-
gators, lack meiosis and the Mendelian properties of segregation and independent
assortment. Second, the altered genetics are not only a product of explicit muta-
tions, but could also result from regulator genes, heritable epigenetic changes, other
coding genes and/or gene duplications and deletions. Third, while simplifying to
two gene states at 16 loci offers many fewer ‘degrees of freedom’ than the genome
of a cancer cell, it is consistent with the number of driver genes typically observed
in a wide range of cancers, and it allows us to follow explicit gene states. We
recognize that reversal of each actual mutation is ordinarily viewed as improbable,
but has been well documented in a wide range of organism traits40. Furthermore,
the reversal of the phenotypic consequence of most genetic changes can occur
when the environmental selection forces change. A simple example is the reversal
of the MDR phenotype in vitro when chemotherapy is removed from the culture
media22.

In the simulations presented here, we used a mutation probability of 0.01 per
cell per division. When a mutation event occurred, it was randomly assigned to one
of the 16 genes. The actual mutation rate in cancer cells is not well established and
hence a controversial topic. The estimated or measured number of mutations per
cell per division varies widely. In fact, one motivation for this work was to examine
variations between the actual underlying mutation rate and the observed mutation
rate in each gene as a result of evolutionary triage. In our preliminary work (Fig. 2),
we found that the results were unaffected by using mutation rates that were an
order of magnitude lower or higher than 0.01. With a mutation rate 410%, the cell
lineages cannot stay at the ESS due to wandering from a mutation-selection
balance23, whereas substantially lower mutation rates (10� 4) made evolution too
slow for achieving the ESS even after 2,000 generations.

The value is greater than that typically observed in normal cells24 and in the
general range of estimated cancer mutation rates observed in other studies41. Thus,
the choice seemed biologically reasonable and, importantly, allowed computational
efficiency without loss of general applicability.

Simulations and replications. We simulated cancer development during 1,000
cell generations (representing 3–10 years depending on the rates of cell division) in
‘patients’ under the nine simulation permutations with 25 replicates for a total of
225 ‘patients’. The nine reflect the three starting phenotypes and three possible
evolutionary trajectories (ESS1, ESS2 and transition from ESS1 to ESS2 due to
temporal variations in blood flow; Supplementary Fig. 1).

Once tumours are established, we simulated targeted therapy by assuming that
the resulting change in a driver gene renders the cell non-replicative and imposes a
specific mortality rate of 25% per generation time. In addition, the dynamics of
therapies targeted to ‘non-driver’ genes and combinations of therapies can be
analysed. Nine hundred simulated patients were analysed for this model (data
available at http://tinyurl.com/ntslsy8).
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