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A molecular toggle after exocytosis sequesters
the presynaptic syntaxin1a molecules involved
in prior vesicle fusion
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Neuronal synapses are among the most scrutinized of cellular systems, serving as a model for

all membrane trafficking studies. Despite this, synaptic biology has proven difficult to inter-

rogate directly in situ due to the small size and dynamic nature of central synapses and the

molecules within them. Here we determine the spatial and temporal interaction status of

presynaptic proteins, imaging large cohorts of single molecules inside active synapses.

Measuring rapid interaction dynamics during synaptic depolarization identified the small

number of syntaxin1a and munc18-1 protein molecules required to support synaptic vesicle

exocytosis. After vesicle fusion and subsequent SNARE complex disassembly, a prompt

switch in syntaxin1a and munc18-1-binding mode, regulated by charge alteration on the

syntaxin1a N-terminal, sequesters monomeric syntaxin1a from other disassembled fusion

complex components, preventing ectopic SNARE complex formation, readying the synapse

for subsequent rounds of neurotransmission.
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A
ll forms of membrane fusion rely on a core family of
SNARE proteins1. The synchronized action of a number
of accessory proteins is also required to oversee the highly

ordered and localized nature of SNARE mediated exocytosis (for
review, see ref. 2). Sec1/Munc18 proteins (SM proteins) are a class
of such accessory factors that are present at all SNARE-catalyzed
membrane fusion sites3. It is known that munc18-01 and
syntaxin1 (the principal SM protein and syntaxin involved in
synaptic exocytosis) interact via at least two distinct modes; one
with monomeric ‘closed’ syntaxin1a and the other involving its
highly conserved amino-terminal (N-terminal) peptide motif4–6.
Current hypotheses incorporate these data into models where
munc18-01 and syntaxin1a interact using distinct binding modes
depending on intracellular location and function3,7. However,
whether munc18-01 interacts with syntaxin1a and functions in
the late stages of synaptic vesicle fusion7–9 or whether it com-
pletely dissociates from syntaxin1a, or syntaxin1a-containing
complexes, during exocytosis is still unspecified. Therefore,
despite a large amount of biochemical, electrophysiological and
ultra-structural data, the spatiotemporal arrangement of munc18-
01 and syntaxin1a at a molecular level in living neuronal cells and
particularly in central synapses remains undefined. Questions
surrounding the molecular interaction starting point of the
synaptic vesicle cycle have proven difficult to probe, principally
because of a dearth of single-molecule resolution approaches.
Here we employed imaging and spectroscopic approaches to
quantify the distributions, movements and interactions of
munc18-01 and syntaxin1a molecules in central synapses to
identify directly the small number of molecules specifically
involved with synaptic vesicle exocytosis and to identify the
interaction pathway in synapses before, during and after synaptic
vesicle exocytosis (Fig. 1a).

Results
Munc18-1 and syntaxin1a single-molecule dynamics. We pre-
viously developed fluorescent syntaxin1a and munc18-1 probes
(Fig. 1b) that we showed target appropriately in neuroendocrine
cells5,10–14, as well as being functional5,10,14 (also shown by others
using similar constructs)15–17, engaging in protein–protein
interactions in a predictable way5,10,16,17. Importantly, the
single-molecule distributions, localizations and interactions of
these essential presynaptic proteins have never been elucidated
in situ—that is, in central neurons. We believe that quantifying
protein–protein interactions at the molecular level, as opposed to
the more common colocalization or bulk dynamic studies, is
essential to allow progress to be made in our understanding of not
just synaptic biology but of the gamut of cell biological questions.
To probe and compare the molecular organization of endogenous
and heterologous munc18-1 and syntaxin1a on the nanoscale, we
employed both direct stochastic optical reconstruction
microscopy microscopy (dSTORM18,19) and photoacti-
vatable (PA) localization microscopy (PALM20,21). dSTORM
involved the immunodetection of endogenous proteins with a
fluorophore-conjugated antibody (Alexa-647) driven into a long-
lived ‘dark-state’ using high-intensity laser illumination in the
presence of a reducing buffer19. Single Alexa-647 fluorophores,
conjugated to secondary antibodies, spontaneously re-emerge
from this dark state, permitting the localization of individual
epitopes separated in a time stack. Munc18-1 and syntaxin1a
molecules were thus detected in chemically fixed cortical neurons
(fixation was for 90min to ensure complete immobilization).
Subsequent co-staining against synapsin was performed to
delineate presynaptic areas. dSTORM imaging revealed that
both endogenous munc18-1 and syntaxin1a molecules (with the
caveat that we detect immunolabelled complexes larger than the

targets) accumulate at nerve terminals (Fig. 1c and Supple-
mentary Fig. 1).

Next we used PALM, comparing the distribution of hetero-
logous syntaxin1a and munc18-1 with the spatial pattern of
endogenous molecules ascertained using dSTORM. To achieve
the maximum resolution, we first examined chemically fixed cells
co-expressing either PA-mCherry-Munc18-1/enhanced green
fluorescent protein (EGFP)-syntaxin1a (EGFP provided diffrac-
tion-limited resolution data) or conversely, PA-mCherry-
syntaxin1a/EGFP-Munc18-1. Positional information describing
PA-mCherry-munc18-1 and PA-mCherry-syntaxin1a molecule
localization was rendered into maps (Fig. 1d), where munc18-1
and syntaxin1a were seen to co-cluster with one another in
varicosities (Fig. 1d). To determine whether these areas
represented nerve terminals, neurons were transfected with PA-
mCherry-syntaxin1a, fixed and co-immunolabelled against
synapsin as before. PALM imaging confirmed that these
varicosities represented synapses; single syntaxin1a (and so also
munc18-1) molecules clustered at synapsin-positive synapses
(Supplementary Fig. 1). By observing and measuring directly the
molecular distributions of these endogenous and heterologous
proteins in neurons for the first time, we reveal a molecular
distribution, with sparse, individual molecules in processes but
denser accumulations in varicosities, suggesting that syntaxin1a
and munc18-1 are trafficked along axons before accumulation in
presynaptic areas22,23.

To test this hypothesis directly, we quantified the mobility of
individual munc18-1 molecules (as opposed to earlier bulk
studies) in living neurons using state-of-the-art single-particle
tracking approaches combined with PALM (sptPALM12,13,24).
Large cohorts of single munc18-1 molecules (6,584 single
molecules from n¼ 3 independent experiments) were tracked,
revealing kinetically and spatially distinct molecular populations
(Fig. 2a–d). Consistent with the notion that the molecules are
trafficked along processes before accumulation in synapses,
munc18-1 molecules exhibited a restricted motion in puncta,
whereas a separate population of munc18-1 molecules displayed
directed movement, travelling with long displacements between
synapses (Fig. 2a–d).

Munc18-1 trafficking depends on binding to syntaxin1a. To
determine whether the interaction with syntaxin1a affected these
different behaviours, we introduced a dominant-negative mutant
of the t-SNARE protein (Syx D6, L165A, E166A-mCerulean5) that,
in neuroendocrine cells, disrupts both munc18-1-membrane
localization (as this is dependent on syntaxin1a interaction25,26)
and exocytosis10,14. This mutant, in contrast to the syntaxin1a
‘open’ mutant (L165A, E166A (ref. 27) that has an unaltered
affinity for munc18-1, has a nearly 10-fold reduced affinity
in vitro5 as a result of a combined disruption of both ‘N-peptide’
and ‘closed-form’ interaction. It is important to note that this
mutant still interacts with munc18-1 at least in vitro, and so any
effects we observe likely point to a partial disruption of
interaction as opposed to a complete abolition of binding. This
approach allowed us to quantify munc18-1 molecular behaviours
in detail in cells readily identifiable as containing mutant
syntaxin1a by virtue of their cyan fluorescence. Comparing data
from this system with that where we introduced wild-type (wt),
full-length syntaxin1a as a control revealed that munc18-1
molecular trafficking was dependent on interaction with
syntaxin1a; disruption of binding with syntaxin1a resulted,
qualitatively, in a more uniform distribution of munc18-1
tracks (Fig. 2b). Quantifying munc18-1 track lengths revealed
significantly longer movements when SNARE interactions were
disrupted (B25% longer; 1.96±0.6 nm (mean±s.e.) when co-
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expressed with wt syntaxin1a, 2.45±0.5 nm in the presence of
Syx D6, L165A, E166A, n¼ 1,613 and 3,605 tracks from three cells,
respectively, Po0.05).

A major advantage of sptPALM, particularly if the most
advanced tracking algorithms are used12,13,28, is the delivery of a
vast amount of content describing the movements of large
numbers of single molecules. The large samples and accurate
data in turn offer statistical certainty and resolution much
greater than can be achieved when using bulk studies. Taking
advantage of this high-content data, and to further understand
the effect of syntaxin1a interaction on munc18-1 molecular
dynamics, we plotted every trajectory angle taken by every
munc18-1 molecule, plotting in circular histograms, or ‘Rose
Diagrams’12,13, to illustrate differences in trajectories and speeds
(Fig. 2c). The Rose diagram is simply a circular histogram
showing the direction taken between steps of a molecular track,

with 36 bins of 10� angles adding to a circle of 360�. The
size of each ‘pie piece’ reports the number of measurements in
each histogram bin, with single-molecule speed shown as a
coloured bar.

Using this approach, we wanted to determine whether
munc18-1 molecule movements in living neurons were affected
by the disruption of interaction with syntaxin1a. To attempt to
measure this, we selected one parameter; the angle of every
munc18-1 molecular movement relative to the direction of the
preceding step in each track. This analysis reveals whether
molecules diffuse freely, apparent as a completely round
histogram (that is, with the same number of measurements in
each 10� bin), or if they are they are somehow directed or
constrained, evident as a skewing of the histogram in one
preferred direction or another—so it becomes ovoid in shape.
This detailed analysis found a decrease in the proportion of
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Figure 1 | Munc18-1 and syntaxin1a single-molecule distribution in neurons. (a) Model of the proposed munc18-1 (red) and syntaxin1a (green)

interactions at a synapse. Munc18-1 binds syntaxin1a in closed confirmation, preventing syntaxin1a from entering the SNARE complex and inhibiting

membrane fusion (i) The binding mode of munc18-1 bound to syntaxin1a switches from the closed to open mode, allowing the formation of the binary

t-SNARE complex (ii) SNARE binary complex with t-SNARE partner SNAP-25 in grey (iii). Ternary complex of open syntaxin1a, SNAP-25 and synaptobrevin

required for membrane fusion (iv). Question marks represent uncertain points of syntaxin-munc18-1 molecular interaction in the synaptic vesicle cycle.

(b) Schematic illustrating the syntaxin1a and munc18-1 constructs used in this study. (c) dSTORM map of immunodetected syntaxin1a (Alexa-647, upper

left) and synapsin-EGFP (upper right) in cortical neurons. A merged image (grey, upper right) shows overlap. Lower panel: a dSTORM molecular map from

the boxed area in the merge image shows the locations of single immunodetected syntaxin1a molecules concentrated in synapsin-positive synapses with

sparse distribution elsewhere in the neuron. (d) PALM localization maps show single molecules of PA-mCherry-syntaxin1a or PA-mCherry-munc18-1

co-clustering with either EGFP-munc18-1 or EGFP-syntaxin1a, respectively. The boxed regions are displayed at a higher zoom (top panels). Scale bars,

500nm. The distribution of heterologous munc18-1 and syntaxin1a fluorescent fusion protein molecules is similar to the endogenous pattern.
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slowest-moving munc18-1 molecules and an increase in the
fastest (Fig. 2c,e), when both interaction modes with syntaxin1a
were disrupted. This speed change is indicative of a loss of
interaction, as soluble munc18-1 molecules are predicted to move
more quickly than those in a membrane-associated complex with
syntaxin1a.

We also found a relative increase in munc18-1 trajectory
reversals when syntaxin1a interaction was disrupted (5,602
molecular track reversals when interaction was disrupted, versus
2,416 when interaction was normal): this is apparent as a skew in
the Rose diagram to the left, as the movement between trajectory
steps is prone to be backwards.
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Figure 2 | Munc18-1 molecular distributions, speeds and dynamics are syntaxin1a interaction dependent. (a) The as-the-crow-flies displacements of

munc18-1 single-molecule tracks are represented in arrow form (the arrow connects the start and end point of each molecular trajectory, with the

arrowhead indicating molecule direction). Molecular tracks are shown by coloured lines, with the colour indicating the time in the image sequence.

Munc18-1 molecular accumulations in varicosities become disrupted in the presence of syntaxin1a D6, L165A, E166A). Scale bar, 1mm. Colour bar: start time,

black; end time, white. The diffraction-limited image is shown in grey. (b) Density plot showing the number of molecular tracks crossing each pixel in the

image, demonstrating munc18-1 accumulation in synapses decreased when interaction with syntaxin1a is disrupted and that the introduction of the mutant

did not decrease munc18-1 molecular number. Colour coding shows the track number. Scale bar, 10mm. (c) Left panel: diagrammatic representation of the

Rose diagram calculations. Once a molecular direction is established, every angle between molecular trajectory steps (2–30 or 2–30 0) is measured. Each

munc18-1 angle (Ø0 or Ø0 0) is then incorporated into circular histogram ‘Rose Diagrams’ (centre and right panels). In this analysis, each of the 36 segments

represents a bin of 10� angle, segment magnitude represents the number of trajectories in each histogram bin and colours indicate the molecular track

speed. Molecular reversals are thus shown as a leftward deflection, as molecules return from where they originated. These show an increase in reversing

munc18-1 molecules and a specific decrease in the number of the slowest-moving molecules with a concomitant increase in the proportion of the fastest

munc18-1 molecules when interaction with syntaxin1a is disrupted. (d) Reconstructing an image to illustrate where track reversals occur highlights a loss of

munc18-1 directionality when interaction with syntaxin1a is disrupted. Green spots indicate complete track reversals; grey background represents the

outline of the cells. Scale bar, 5 mm. (e) Quantifying molecular speeds shows that when binding with syntaxin1a is disrupted, there is a relative decrease in

the proportion of slowest munc18-1 molecules and a concomitant increase in faster-moving munc18-1. Grey bars, munc18-1 molecule speeds in the

presence of syntaxin1a D6, L165A, E166A); black bars, control munc18-1 molecular speeds. Error bars¼ s.e.m.
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This analysis alone does not allow a full interpretation: to
understand these data, spatial information is required. Therefore,
to interpret this complex behavior, we extracted the molecules
that showed these predominant direction reversals and recon-
structed these into an image representing their original position
in the cell (Fig. 2d). This revealed that when both the available
modes of interaction with syntaxin1a were disrupted by mutation
to Syx D6, L165A, E166A, munc18-1 molecules lost directionality
throughout the entire cell, whereas in the presence of wt
syntaxin1a, such molecular behaviours were less spatially
homogeneous (Figs 1 and 2 and Supplementary Fig. 1). Finally,
we plotted the same munc18-1 single-molecule velocities in a
traditional histogram, reiterating that when syntaxin1a interactions
were disrupted, molecular speeds increased (Fig. 2e). Together,
these experiments show that munc18-1 molecular behavior and
directionality, at least in part, depend on the interaction with
syntaxin1a using one of the available binding modes.

The molecular speeds we measure are faster than those
previously reported for these and other neuronal proteins using
lower temporal resolution approaches23,29, possibly due to the
under-sampling in earlier studies. To clarify this, we performed
fluorescence recovery after photobleaching (FRAP) experiments
at decreasing bleaching and sampling rates. Comparing this with
molecular tracking at the same rates, and with fluorescence
correlation spectroscopy (FCS) measurements (below) at micro-
second rates, we found that apparent molecular speeds varied with
acquisition rate down to B3Hz, at which point they plateaued,
confirming that our sampling rates were sufficient to capture rapid
molecular dynamics from synapses (Supplementary Fig. 2).

Together this combination of single-molecule resolution
imaging, high-resolution tracking and new informatics
approaches reveal that the behavior of munc18-1 in central
neurons is controlled by an interaction with syntaxin1a. Which
mode of interaction is utilized at the different neuronal sites
identified using these approaches, and how differences in mode
may be functionally important in neurons cannot be fully
addressed using imaging alone; spectroscopy is required to begin
to probe molecular interactions.

Syntaxin1a–munc18-1 interactions in central neurons.
Munc18-1 has been attributed a range of essential functions, as a
chaperone26,30, as a ‘docking factor’31, acting with SNAP-25 and
synaptotagmin32 and as an essential modulator of the very last
stages of synaptic vesicle fusion7, even shaping fusion pore
kinetics8. These distinct functions suggest a molecular interaction
pathway between docking and fusion3, as it is accepted that if
munc18-1 regulates the late stages of vesicle exocytosis, it must be
via interaction with the N terminus of syntaxin1a (as opposed to
‘closed’ syntaxin interaction) in the ternary SNARE complex6.
However, recent data using mutagenesis and electrophysiology
showed that whereas munc18-1 has a role in the docking and
priming stages of exocytosis, its continued association with the
N-peptide of syntaxin1a appears dispensable for normal
secretion33. What is still not known, however, is whether
munc18-1 and syntaxin1a dissociate at all during synaptic
exocytosis or whether they remain bound, and when if tested
directly, the N-terminal mode interaction persists. Given that
exocytosis is likely to be mediated by only a few SNARE/SM
molecules12,13,34,35 that we have shown here that localize
dynamically to synapses in an interaction-dependent way
(Figs 1 and 2), single-molecule resolution approaches with very
high temporal rates are required to dissect synaptic interactions.

To examine dynamic molecular interactions, as opposed to co-
localizations, in intact synapses, we used FCS that reports
molecular concentrations, diffusion rates and interactions on

the microsecond timescale. This has the advantage over more
commonly used FRET assays in that it can report molecular
dissociations as well as interactions, essential when analysing a
dynamic molecular pathway (Fig. 3a). FCS was performed in
electrically active cortical neuronal synapses in cells expressing
fluorescent reporter molecules (Fig. 3b). To gain specificity and
examine interactions at different points in the synaptic vesicle
pathway, we employed botulinum neurotoxin (BoNT)-resistant
molecular probes, expressed at very low levels (10–100s of
molecules per measurement) as tracers, and specifically removed
endogenous SNARE proteins as required to reveal interaction
modes at defined points in the synaptic secretory pathway.

First, we tested whether we could quantify molecular diffusion
rates and interactions (Fig. 3c–e) by expressing EGFP and
mCherry fluorescent proteins, and performing FCS measure-
ments. Protein expression was driven from a ‘crippled’ cytome-
galovirus (CMV) promotor36 ensuring that tracer levels of
heterologous proteins were present, with varicosities containing
the lowest detectable fluorescence selected for analysis. Both the
EGFP and mCherry photon fluctuations could be measured with
a 2-ms acquisition rate allowing protein molecular concentrations
to be measured in situ, ensuring similar expression levels in all
experiments. FCS has the advantage of being applicable equally in
cellular systems as well as in vitro, so we compared these data with
those acquired from defined concentrations of highly purified
fluorescent proteins in vitro; these calibrations confirmed that we
could accurately report molecular behaviours, diffusion rates and
concentrations in neurons (Supplementary Figs 3–5). Box plot data
are also simplified and presented in Supplementary Fig. 4.
Representative raw data and fitted autocorrelation functions are
shown in Supplementary Fig. 5.

As our single-molecule imaging data suggested that munc18-1
behaviour in synapses was syntaxin1a dependent, we measured
the rates of diffusion of mCherry-munc18-1 and EGFP-
syntaxin1a in the varicosities identified by synapsin co-staining
in earlier experiments, again acquiring data with an acquisition
rate of 2ms (Fig. 3b). Autocorrelation curves for these data
accumulated over 5–10 s were generated, delivering similar
diffusion rates for munc18-1 and syntaxin1a molecules (Fig. 3f–i;
0.35±0.09mm2 s� 1 and 0.41±0.07mm2 s respectively; mean±
s.e.m., n¼ at least 10 experiments). Importantly, munc18-1
diffused at a rate similar to that of syntaxin1a, suggestive of
protein–protein interaction in the resting synapse (as munc18-1 is
a soluble protein and syntaxin1a is an integral membrane protein).
Closer inspection of the diffusional behavior of these proteins
revealed that both diffused with directed motion, indicative of
membrane association (Fig. 3j). To rule out the possibility that this
was simply a result of the crowded synaptic microenvironment37,
we performed similar FCS experiments using unfused (that is,
soluble) EGFP in cortical varicosities, finding a significantly faster
diffusion rate of, (5.32±0.83mm2 s� 1, mean±s.e.m., n¼ 13, four
cells, Mann–Whitney U-test, Po0.001) that followed a model of
Brownian free diffusion (Fig. 3j).

Next to determine the rate of diffusion of monomeric munc18-
1 molecules in the cellular environment, we first chose HEK293
cells, known not to express syntaxin1a or other munc18-1-
binding proteins. Munc18-1 in this cellular expression system was
cytosolic, and FCS autocorrelation analysis yielded a diffusion
rate of 9.26±1.86 mm2 s� 1 (mean±s.e.m., n¼ 9 independent
experiments; Supplementary Fig. 3). This molecular diffusion was
slower than for cytosolic EGFP alone (D¼ 19.66±1.06 mm2 s� 1,
mean±s.e.m., n¼ 9 independent experiments), consistent with
the molecular mass of munc18-1-EGFP being four times that of
unfused EGFP, resulting in a slower diffusion rate. As synaptic
munc18-1 had a significantly slower rate of diffusion than
cytoplasmic munc18-1 in a HEK293, where no syntaxin1a is
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present, this provided further evidence of an interaction with
syntaxin1a. Correlating diffusion rate with ‘Deviation from
Brownian motion’—a parameter describing the molecular
motions as they pass through the excitation volume38—revealed
that two populations of munc18-1 molecules were detectable in

synapses; both shared similar diffusion rates with syntaxin1a but
differed in diffusional behaviour, suggesting that a small subset of
munc18-1 molecules were associated with a complex in synapses
distinct from a direct interaction with syntaxin1a. Notably here,
no syntaxin1a was ever detected that did not have munc18-1

0.01 0.1 1 10 100 1,000
0.0

0.2

0.4

0.6

0.8

1.0

A
ut

oc
or

re
la

tio
n

Log lag time (ms)

–4

0

4

0.01 10 1,000

Log lag time (ms)

0.1 1 10 100 1,000

A
ut

oc
or

re
la

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

0.01

1 0

500 ms5 
pA

4

–4
0

4

–4
0

2

–2
0

R
es

id
ua

ls

0.
01 0.

1 1 10 10
0

1,
00

0

Log lag time (ms)

0.01 10 1,000
–4

0

4

D
iff

us
io

n 
ra

te
 (

μm
2  

s–1
)

0

2

4

6

8

10

12

mCherry EGFP

n=15 n=13

++ +

D
iff

us
io

n 
ra

te
 (

μm
2  

s–1
)

0.0

0.5

1.0

1.5

2.0

mCherry-
Munc18-1

EGFP-
syntaxin1a

n=15 n=10

+ +

4

–4
0R

es
id

ua
ls

0.
01 0.
1 1 10 10
0

1,
00

0

Log lag time (ms)

4

–4
0

–0.8 –0.4 0.0 0.4 0.8 1.2 1.6
0

2

4

6

8

10

12

Deviation from brownian motion

EGFP
mCherry
EGFP-syntaxin1a
mCherry-Munc18-1

D
iff

us
io

n 
ra

te
 (

μm
2  

s–1
)

Deviation from brownian motion

–1.0 –0.5 0.0 0.5 1.0 1.5

**

mCherry

EGFP

mCherry-Munc18-1

EGFP-syntaxin1a

Log lag
time (ms)

Log lag
time (ms)

A
ut

o-
co

rr
el

at
io

n
A

ut
o-

co
rr

el
at

io
n

D = 5.9 μm2 s–1

D = 4.8 μm2 s–1

D = 0.228 μm2s–1

D = 0.195 μm2s–1

57 % 56%  

W0

(ii)

(iii)

(i)

Z0
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proteins (Supplementary Fig. 3). FCS provides high spatiotemporal resolution of protein diffusion rate and mode (i) interaction (ii) and reaction kinetics (iii).

(b) Representative cortical neuron transfected with munc18-1-EGFP (left panel) showing varicosities (white circles) where measurements were acquired.

Scale bar, 5 mm. Example spontaneous mEPSC trace (right panel). (c) Representative autocorrelation fits of unfused EGFP and mCherry molecules in

neuronal synapses, autocorrelation trace of the same data (insert). No cross-correlation could be detected. (d) Fit residuals of the data in c. (e) Box plot of

EGFP and mCherry diffusion in resting synapses. (f) Representative autocorrelation and cross-correlation fit (blue) result of syntaxin1a (green) and

munc18-1 (red), raw autocorrelation trace of the same data (insert). (h) Fit residuals of the data in f. (i) Box plot of syntaxin1a and munc18-1 diffusion data

in resting synapses (simplified bar charts showing means and s.e.m. for each treatment are presented in Supplementary Fig. 3). The rates of diffusion were

calculated from the derived autocorrelation curves; centre lines represent the median; cross indicates the mean; box limits indicate the 25th and 75th

percentiles and whiskers extend to minimum and maximum points. Notches are 95% confidence intervals that two medians differ. There are no statistical

differences between groups. (j) Graphical representation of the calculated deviation from Brownian motion of each sample diffusion data. EGFP and

mCherry in synapses diffuse with a Brownian motion (indicated by the blue dashed line), indicative of free diffusion in the synaptic cytosol, whereas

syntaxin1a and munc18-1 molecules deviate from this behavior, indicative of membrane anchoring and thus interaction (as monomeric munc18-1 is a soluble

protein). In this plot (left), the central black bars indicate the median, with error bars indicating s.e.m. Right panel: plotting ‘Deviation from Brownian

motion’ against diffusion rate reveals two populations of mCherry-munc18-1 behaviours in synapses; both populations have low diffusion rates but differ in

diffusional behavior—one group of molecules diffuse in a directed manner and the other appears caged.
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molecules sharing identical dynamics (Fig. 3j). As a final,
additional test of protein–protein interaction, we cross-
correlated the fluorescence fluctuation data (fluorescence
cross-correlation spectroscopy; FCCS) acquired from mCherry-
munc18-1 and EGFP-syntaxin1a molecular signals in synapses,
finding that B60% of each binding partner co-diffused in the
synapse (Fig. 3f). Despite this result, this latter measure, FCCS,
proved unreliable in our hands as it was technically difficult to
cross-correlate data from the short recordings we required in
small synapses. However, the multiple alternative parallel
measures confirm that we could quantify, robustly, protein–
protein interactions inside synapses with high temporal
resolution and that the diffusion rates measured, combined
with data describing molecular freedom, act as an accurate, rapid
reporter for direct interactions.

A concern about these assays is that the background of
endogenous syntaxin1a could interact with our mCherry-
munc18-1 probe expressed at tracer levels, so skewing our data.
To control for this and improve the specificity of these assays, we
removed endogenous syntaxin1a from synapses by treatment
with BoNT/C, which cleaves proteolytically syntaxin1a. As a test
for endogenous syntaxin1a cleavage and to further test our
hypothesis that munc18-1 interacts with syntaxin1a in the
synapse, we determined the diffusion rate of mCherry-munc18-
1 molecules in these cells. mCherry-munc18-1 in these samples
had a significantly faster diffusion rate than in cells with intact
syntaxin1a (diffusion rate in BoNT/C-treated cells¼ 3.27±0.44
mm2 s� 1, increasing from 0.35±0.09 mm2 s� 1, mean±s.e.m.,
n¼ 10, Po0.001). This rate was also slower than that we
determined for cytosolic monomeric munc18-1 in HEK293 cells,
indicative of the crowded synaptic environment37.

Next we introduced EGFP-syntaxin1a mutated to be BoNT C
resistant39; (syntaxin1a-CR; Fig. 4a). Munc18-1 and syntaxin1a-
CR colocalized with no gross spatial reorganization in these cells,
imaged at diffraction-limited resolution. FCS studies as before
confirmed that the two protein partners in this clean background
co-diffused with statistically similar diffusion rates (Fig. 4b;
0.68±0.18 mm2 s� 1 and 0.72±0.2 mm2 s� 1, respectively)—
furthermore, these behaviours were identical to those found in
non-toxin-treated samples (see Fig. 3).

Thus, these combined experiments demonstrate that we can
detect and quantify presynaptic protein interactions on the
molecular level at the high speeds necessary to determine dynamics.

Dissecting interaction modes during the vesicle fusion cycle.
Having confirmed that we could detect the interaction in
synapses, we next set out to determine whether the munc18-1
there interacted mainly with monomeric syntaxin1a, or with the
t-SNARE heterodimer or the ternary SNARE complex. To
address the first question, we treated samples with BoNT A
(BoNT/A), which cleaves the carboxyl-terminal nine amino acids
from SNAP-25, altering the t-SNARE heterodimer conforma-
tion11,40. Further, it is also known that specifically BoNT/A
cleavage of SNAP-25 does not alter the affinity of the t-SNARE
heterodimer partners40. Performing our FCS analyses as before,
using tracer probes in synapses, revealed that both syntaxin1a and
munc18-1 increased their diffusion rates by a similar extent
compared with untreated synapses, consistent with being part of a
complex with lower molecular mass (Fig. 4c,d). Furthermore,
analysis of the mode of diffusion found that whilst syntaxin1a and
munc18-1 remained in complex, they co-diffused differently after
BoNT/A treatment, adopting a less restricted behaviour (Fig. 4e).

Together these data suggest that munc18-1 interacts with the
t-SNARE heterodimer predominantly and not with monomeric
syntaxin1a in resting synapses.

Determining syntaxin1a-munc18-1 pre-fusion interaction mode.
Syntaxin1a and munc18-1 can adopt functionally and spatially
distinct modes of interaction5,6. As we found that munc18-1
interacts with the t-SNARE heterodimer, this suggests binding to
the so-called N-peptide motif in syntaxin1a. To address this, we
transfected cells with a phosphomimetic BoNT/C-resistant
Syntaxin1aS14ECR. Syntaxin1a has a consensus phosphorylation
site for Casein kinase II at Serine 14; 40% of total brain syntaxin1
was shown to be phosphorylated at this site in axons but not in
active zones23; furthermore, we showed recently that charge
alteration at this site destabilized specifically the interaction
between the N-terminal peptide motif of syntaxin1a and munc18-
1, whilst leaving the alternative modes of interaction between
these partners intact10,41. As this mutant has a significantly lower
affinity for munc18-1 than wt-syntaxin1a10, a (toxin resistant)
construct was thus used in neuronal cells where endogenous
syntaxin1a was removed using BoNT/C poisoning (see Fig. 4);
EGFP-Syntaxin1aS14ECR and mCherry-munc18-1 co-localized
with an arrangement not dissimilar from the endogenous protein
patterns, with enrichment in synapses (Fig. 5a). FCS analysis was
then employed to further understand the interaction between
these proteins (as opposed to the co-localization, which is limited
by the resolution of the imaging system (B250 nm in this case)).
These experiments found that the rate of diffusion and restricted,
membrane-associated behaviour of syntaxin1aS14ECR was
indistinguishable from that of wt EGFP-syntaxin1a (Fig. 5b,d).
Importantly, in these synapses, mCherry-munc18-1 followed a
freely diffusing model with a rate of diffusion approximately four
times faster than syntaxin1aS14ECR (Fig. 5b,c) but in neuronal
processes, behaved in a manner indistinguishable from that when
associated with wt syntaxin1a (Fig. 5b,d). Notably, when the
diffusion rate was plotted against diffusional behaviour as before,
complexes that behaved in a tightly caged manner, with a very
restricted diffusion rate, were absent compared with when wt
syntaxin1a was present (Fig. 5d).

Together these data indicate that S14 modification disrupts the
interaction between syntaxin1a and munc18-1 and thus demon-
strate that munc18-1 interacts predominantly with the N-term-
inal motif of syntaxin1a in resting synapses. Furthermore, a
specific subpopulation of complexes in synapses, identified by
virtue of simultaneously caged, non-Brownian and slow diffusion,
was absent when syntaxin1a–munc18-1 N-terminal interaction
was disrupted in synapses.

We hypothesized that this subpopulation of complexes,
representing on an average B10% of SNARE molecules,
represented those ‘release-ready’ SNARE complexes with
munc18-1 engaged that may go onto support synaptic vesicle
fusion during an action potential. We tested this in two ways;
first, as the association of the vesicular SNARE, synaptobrevin, is
known to occur after t-SNARE heterodimer formation42, even in
the presence of SNARE complex-associated munc18-1 (refs
5,6,43), we treated neuronal preparations with tetanus
neurotoxin (TeNT) to cleave specifically synaptobrevin44. FCS
after this treatment showed that in resting synapses, syntaxin1a
and munc18-1 interacted as before but exhibited rates of diffusion
in complex significantly faster than found in untreated synapses
(Supplementary Fig. 6), suggesting that the munc18-1–syntaxin1a
complexes we detected could be associated subsequently with
synaptobrevin. The hypothesized ‘release-ready’ molecular
complex diffusional behaviours we had previously observed, were
absent after this synaptobrevin cleavage (Supplementary Fig. 7).

Following synaptic protein interactions during exocytosis. We
next wanted to determine the synaptic protein interaction path-
way during depolarization and exocytosis. A recent study
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reported a large-scale, temporary dispersal of munc18-1 from
synapses during electrical stimulation23, but it remains unclear
whether all the munc18-1 redistributes from the synapse during
stimulation or whether some remains associated with syntaxin1a
and only soluble munc18-1 disperses. If the latter is true, then it is
credible that the munc18-1 molecules that remain bound to
syntaxin1a are contributing functionally to the synapse, whereas
the soluble, mobile pool represents a reserve. Therefore, to
determine whether neuronal activity resulted in a change in
functional interaction (either dissociation or in mode of binding)
between munc18-1 and syntaxin1a at the molecular level, we
delivered trains of electrical depolarizations during FCS recording
to determine on the molecular level whether interactions
persisted. Parallel high-speed measurements (Supplementary
Fig. 8a) of synaptic calcium levels and current-clamp electro-
physiology found that repetitive neuronal action potentials
were maintained for the time course of the stimulation with a
mean time of B5.4 s in these nerve terminals (Supplementary
Fig. 8b). We established that these stimulation regimes induced
depletion of synaptic vesicle pools using FM-dye assays, and

that the presence of our probes at such low levels supported
normal fusion kinetics (Supplementary Fig. 8c). Exocytosis
continued for several seconds beyond voltage-gated Ca2þ

channel inactivation, determined by using transfected pHluorin
reporters in combination with bafilomycin blockade of vesicle
reacidification (SypHy) assays (Supplementary Fig. 8d); these data
indicated that Ca2þ concentration was sustained at levels
sufficient to elicit vesicle fusion and that the expression of our
fusion proteins had no effect on vesicular fusion kinetics, or the
size of the RP or RRP, as compared with non-transfected controls.
Maximal stimulation elicited a reported release of 50±10.2%
of synaptic vesicles across all synapses—equating to B100
synaptic vesicles per bouton. Thus, immediately on the
initiation of depolarization for 30 s, we performed FCS
measurements, to probe specifically the period within synapses
when Ca2þ was maximal. No change was seen in the behaviours
of unfused-mCherry or -EGFP that remained freely diffusing in
synapses, confirming that the stimulation regime had no non-
specific effect on the synaptic microenvironment or our assay
(Supplementary Fig. 8e).
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FCS experiments during depolarization showed identical
diffusion rates and behaviours for both syntaxin1a
(1.18±0.37 mm2 s� 1) and munc18-1 (0.78±0.2 mm2 s� 1, n¼ at
least 10 independent experiments, mean±s.e.m.), which did not
alter from the resting state, with both showing a restricted
diffusion pattern indicative of a persistent interaction during
depolarization (Fig. 6a). Importantly, there was an enrichment of
‘release-ready’ complexes during depolarization (to B20% of
detected molecules, compared with B10% in resting synapses),
lending weight to our conclusion that we could identify the subset
of complexes active in synaptic vesicle exocytosis in these boutons
(Fig. 6a).

Syntaxin1a interaction switch occurs after SNARE disassembly.
Next we performed experiments using the syntaxin1aS14ECR
mutant, which we found previously not to interact with munc18-

1 in resting neurons. Surprisingly, during depolarization, an
induced interaction could be detected, with syntaxin1a remaining
membrane associated and the previously fast, Brownian diffusion
of munc18-1 in syntaxin1aS14ECR synapses slowing to rates
identical to syntaxin1aS14ECR with a restricted motion (Fig. 6b).
This effect was confined to synapses; measurements from axonal
or dendritic regions of the cells showed no interaction between
syntaxin1aS14ECR and munc18-1 under any circumstance. These
experiments indicate that whereas in resting synapses the
N-peptide interaction predominates, during depolarization and
exocytosis, a molecular switch to munc18-1 interacting with
closed-form syntaxin1a occurs. However, when we plotted dif-
fusion rate against ‘deviation from Brownian motion’ as before
(Fig. 6b), our measure that we postulated could identify ‘release-
ready’ syntaxin1a–munc18-1 complexes, we did not find the
slow-moving, caged complexes apparent previously (see Fig. 6a),
presenting a conundrum.
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Our maximal stimulation regime (20Hz, 30 s) contains vesicle
recycling and SNARE complex disassembly within this time;
earlier work using identical regimes characterized the onset of
endocytosis that increased to maximal rates within this 30-s
period45. We hypothesized that the switch from fusion-
permissive munc18-1 N-peptide interaction to inhibitory
closed-syntaxin1a interaction occurs on the generation of
monomeric syntaxin1a after exocytosis and SNARE complex
disassembly. This hypothesis is further strengthened by our
observation that this toggle occurs only where vesicle exocytosis is
situated—that is, in synapses but not in neuronal processes
(Fig. 6b–d). To support this, we separated our FCS data into two
segmented temporal blocks; the first 10 s of stimulation (where we
already determined that the voltage-gated Ca2þ channels are
open and Ca2þ concentrations in the synapses are rising rapidly
to maximal levels; Fig. 6b,c), and the final 10 s, after the majority
of synaptic VGCCs have inactivated and recycling has
commenced. Examining these data in this manner confirmed
that indeed munc18-1 and syntaxin1aS14ECR do not interact at
the initiation of depolarization but that a rapid induction of
interaction, reported as a simultaneous decrease in the rate of
diffusion of both munc18-1 and syntaxin1aS14ECR as well as
FCCS, occurs after peak exocytosis (Supplementary Fig. 9).

To further test this over fields of synapses, we next performed
FLIM46,47, to quantify FRET between EGFP-syntaxin1a (or
EGFP-syntaxin1aS14ECR) and mCherry-munc18-1 (Fig. 6c,d),
finding that as expected, syntaxin1aS14ECR and munc18-1 did not
interact in synapses before depolarization, but that an induced
interaction was strongly evident in varicosities after maximal
stimulation. Finally, we conducted similar experiments in the
presence of NEM to inhibit NSF and so SNARE complex
disassembly post exocytosis48,49; in this condition, no induced
interaction between munc18-1 and syntaxin1aS14ECR could be
detected (Fig. 6c,d). Notably, the FLIM data describing
syntaxin1aS14ECR–munc18-1 interaction are bimodal, indicating
interaction dichotomy. Generating FLIM maps reconstructing
these FRET data into an image revealed that syntaxin1aS14ECR–
munc18-1 interactions post exocytosis are spatially restricted to
varicosities, with no FRET detected in axons (Fig. 6d). These
findings are summarized in a cartoon (Fig. 6e).

Discussion
Visualizing and quantifying synaptic biology on the single-
molecule level is required if we are to better understand how
central synapses, and membrane trafficking processes in general,
function. Here we present quantitative data describing the

numbers, movements, localizations and interactions of presynap-
tic SNAREs and an important accessory protein, munc18-1, in
active cortical neurons. SM protein biology has long been
controversial; munc18-1 was originally thought to be an
inhibitory factor, as it was isolated by virtue of its high-affinity
interaction with monomeric syntaxin1a, sequestering it in an
inactive form50. Contemporaneous findings that munc18-1 acted
at the latest stages of vesicle exocytosis proved controversial8, but
later it emerged that munc18-1 could indeed interact, via a
different binding site in syntaxin1a, with the ternary SNARE
complex6,47. Importantly, however, the precise temporal sequence
of interactions between the SNAREs and regulators in the run up
to synaptic vesicle fusion remains speculative, not least because of
a lack of suitable approaches to probe directly molecular
localizations, movements and interactions in situ. We present
several independent lines of evidence to support the hypothesis
that munc18-1 molecules are localized to synaptic terminals, in a
syntaxin1a-dependent manner, where munc18-1 diffuses in a
restricted fashion as compared to non-synaptic compartments.
Trafficking along axons to the synaptic regions involved munc18-
1 bound to ‘closed’ syntaxin1a, whereas on arrival at the synapse,
syntaxin1a adopts an ‘open’ conformation and munc18-1 remains
associated with the N-peptide motif. Our experiments using
BoNT/A and TeNT provide data to suggest that at this stage, the
majority of munc18-1 in the resting synapse is associated with
syntaxin1a that is engaged in the ternary complex7. During
depolarization and synaptic vesicle exocytosis, no large-scale
dissociation of munc18-1 and syntaxin1a was detected. However,
further dissecting this interaction in a clean background, using
syntaxin1aS14ECR, that does not support N-peptide interaction
with munc18-1 (ref. 10) revealed that a rapid switch occurs in
binding mode after exocytosis. We conclude that a likely
hypothesis is that the binding of munc18-1 to monomeric
syntaxin1a in a closed form is induced post fusion after the
ternary complex disassembly by alpha-SNAP and NSF and
indeed, inhibiting disassembly with NEM also abolished the
molecular toggle.

The data we present here provide direct and detailed
information about the syntaxin1a–munc18-1 interaction pathway
from trafficking, synaptic localization, interactions leading up to,
during and after exocytosis. We hypothesize that a key role for
munc18-1 is to prevent highly reactive, monomeric neuronal
syntaxin1a from entering into SNARE complexes at the wrong
point in the synaptic vesicle cycle. This hypothesis is attractive for
several reasons; first, our earlier work in neuroendocrine cells
showed directly that a principal role of munc18-1 is to prevent
ectopic interaction between syntaxin1a and SNAP-25 in

Figure 6 | Syntaxin1a and munc18-1 interaction mode switches dynamically post exocytosis. (a) Left panel—FCS autocorrelation data show identical

diffusion rates of syntaxin1a and munc18-1 in synapses before and during maximal stimulation. Right panel—Syntaxin1a and munc18-1 molecular diffusion

models differ before and during maximal stimulation, with a 100% enrichment of molecular complexes exhibiting caged motion and low diffusion rates

during stimulation (lower left quandrant of graph). (b) Destabilizing the N-peptide interaction results in a dissociation of syntaxin1a and munc18-1

specifically in synapses but a rapid interaction mode switch occurs during maximal stimulation. Left panel—FCS autocorrelation data deliver significantly

different diffusion rates for munc18-1 and syntaxin1a in resting synapse, that converge during depolarizations. Right panel—EGFP-syntaxin1aS14ECR and

munc18-1 molecular diffusion during maximal stimulation: munc18-1 molecules significantly slow during stimulation. Inset: expanded axes scales showing

munc18-1 and EGFP-syntaxin1aS14ECR diffusion rates and modes in resting synapses. Symbols are as for a. Notably, the slow, caged population of molecules

is absent during stimulations, in contrast to the wild-type syntaxin1a system. (c) Representative FLIM analyses of FRET between wt EGFP-syntaxin1a

(donor) and mCherry-munc18-1 (acceptor); molecular interaction was reported as a mean donor fluorescence lifetime shorter than the mean non-FRET

control across neurons (blue line); this threshold (solid vertical line) did not alter during maximal stimulation. Reduced FRETwas detected between EGFP-

syntaxin1aS14ECR and mCherry-munc18-1 before stimulation (red line) but this increased significantly after maximal stimulation (dashed grey line). This

induction of interaction was abolished in the presence of NEM to inhibit SNARE disassembly post exocytosis (grey line). (d) FLIM maps illustrating spatial

restriction of syntaxin1aS14ECR–munc18-1 interactions to varicosities after maximal stimulation are dependent on SNARE disassembly. Colour bar indicates

donor fluorescence lifetime—shorter (blue) values indicate FRET and direct protein–protein interaction. Scale 1 ns (blue)—2 ns (red). Scale bar, 5mm.

(e) Cartoon incorporating our data into a refined model of the syntaxin1a–munc18-1 interaction pathway.
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intracellular locations26. Second, to our knowledge, no data have
ever been reported that show monomeric syntaxin1a in a cellular
context. Our model here suggests that the syntaxin1a–munc18-1
equilibrium in the pre-synapse is normally shifted towards
interaction, either in a complex that would permit SNARE
complex formation, or in an alternative-binding mode known not
to permit reactivity with SNAP-25 (refs 3,6,47). Earlier studies
could not elucidate at which point in the exocytotic pathway the
necessary switch in interaction mode occurred; our findings here
help unify a number of apparently conflicting studies that
variously found munc18-1 N-peptide interaction essential, or not
required for normal synaptic function3,4,7; in any case, the role of
the N-peptide interaction remains unclear51. We hypothesize that
the N-peptide interaction in part is to maintain munc18-1 at a
proximal location to the SNARE complex, ready to adopt the
‘closed-conformation’ interaction as rapidly as possible on the
generation of monomeric syntaxin1a after vesicle fusion.

This is supported by our data here, which show that munc18-1
binds to closed (that is, non-reactive) syntaxin1a whilst trafficking
along neuronal processes to the synapse, at which point the
interaction mode alters, allowing munc18-1 to remain associated
with the binary and ternary SNARE complex, pre-fusion. Our
experiments showing a spatial and functional segregation of
interaction mode, dissected using a phosphomimetic mutant of
syntaxin1a, suggest, but do not show definitively, that phosphor-
ylation of syntaxin1a near the N-peptide motif alters the
preferred binding mode with munc18-1. If, as has been advocated
recently, the ‘default’, lowest-energy interaction mode is for
‘closed-form’ binding with munc18-1 (ref. 51), then disruption of
N-peptide interaction, as we previously showed10, via charge
alteration on syntaxin1a Serine 14, long recognized as a site of
syntaxin1a phosphorylation specifically in synapses (with no
function identified)22, presents a simple mechanism for switching
interaction mode.

How could the closed-form interaction be ‘opened’ in the pre-
synapse, readying syntaxin1a–munc18-1 for subsequent rounds
of fusion? Munc13-1 is localized to the presynaptic active zone,
and its action there would increase either the availability of, or the
affinity of syntaxin1a for SNAP-25 to induce this interaction
switch with munc18-1 (ref. 52). During exocytosis, munc18-1
remains associated with syntaxin1a via the N-peptide motif
throughout synaptic depolarization, perhaps with some
functional input to shape the final fusion event8; in any case,
this interaction ensures the close co-localization and preferential
stoichiometry of munc18-1 with syntaxin1a. Immediately post
fusion, the ternary SNARE complex is disassembled by the
concerted actions of NSF and alpha-SNAP53, releasing reactive,
monomeric syntaxin1a that can be immediately clamped by
closely-associated munc18-1, remaining in the closed-
conformation until the action of munc13-1 and SNAP-25 at the
appropriate spatiotemporal location in the cycle (Fig. 6e).

Super-resolution microscopy has the potential to revolutionize
our understanding of cell biology, by allowing the localization of
single molecules with huge certainty in the environments in
which they normally reside—inside cells. Molecular maps alone,
however, could only rarely provide the information required to
provide new models and understanding; tracking single-mole-
cular behaviours, particularly powerful when large numbers of
molecules can be sampled, provides a huge content not previously
accessible. No super-resolution microscopy can detect protein–
protein interactions in situ; the only way to quantify dynamic
interactions at the molecular level required is to use spectroscopic
approaches such as FLIM and FCS, presented here. The
combination of these approaches is particularly powerful, serving
to highlight not only the synergy between them, but also the
limitations of each in isolation. Together these quantitative,

single-molecule resolution approaches provide new data help
define the entire lifecycle of the neuronal syntaxin-SM protein
interaction and provide new insights into the synaptic vesicle
cycle and the phenomenon of membrane fusion in general.

Methods
Primary cell culture, plasmids and transfections. Primary embryonic cortical
neurons were prepared from the cortices of E18.5 embryos of Sprague–Dawley rats,
which were killed according to Home Office Schedule 1 regulations. Cortical tissue
was dissected and digested in papain (10Uml� 1) at 37 �C for 20min. The tissue
was then disaggregated and plated onto poly-D-lysine (50 mgml� 1)/laminin
(10 mgml� 1)-coated cover slips at a density of 107 cellsml� 1. Cells were main-
tained in clear neurobasal medium (Invitrogen) supplemented with B27, glutamine
and 1% pen-strep. Plasmids expressing munc18-1, syntaxin1a, syntaxin1a
(openD6), syntaxin1a-CR, syntaxin1aS14ECR, synaptophysin-pHluorin and
synapsin were transfected on DIV 12 with Lipofectamine 2000 (Invitrogen).
Crippled mammalian expression plasmids were generated for munc18-1, syntax-
in1a, syntaxin1a-CR, syntaxin1aS14ECR by replacing the CMV promoter with a
truncated CMV.

Botulinum neurotoxins. BoNT/A and BoNT/C were purchased from Miprolab,
Germany. TeNT was purchased from Sigma-Aldrich. Neuronal cultures were
exposed to 10 nM of toxin for 5min at 37 �C in the presence of 55mM KCL
stimulation buffer, following this the cells were thoroughly washed and maintained
in preconditioned neurobasal medium at 37 �C for a minimum of 2 h before
commencing FCS experiments.

Protein purification (EGFP, mCherry). Coding sequences for EGFP (Clontech
pEGFP-N1) and mCherry (Clontech pmCherry-N1) were amplified by PCR with
added poly-histidine tag and restriction sites. PCR fragments were then inserted
into the bacterial expression plasmid pGEX-KG for Glutathione-S-transferase
(GST) fusion. EGFP fused to mCherry was created by ligation of EGFP into EcoRI
and SalI sites of the newly constructed pGEX-KG_mCherry plasmid. Recombinant
fluorescent proteins were expressed in E.coli and purified using affinity, ion
exchange and size exclusion chromatography. Affinity chromatography was carried
out using GST and His-tag purification. GST purification was performed first by
incubation of clarified bacterial lysate with Glutathione-Sepharose beads (GE
Healthcare). Beads were washed twice with 500mM NaCl in buffer A (20mM Tris
pH 7.4, 1mM EDTA and 0.1% TX-100) and twice with 150mM NaCl in buffer A.
Final washing step was done in low salt buffer A excluding EDTA followed by
thrombin (Sigma) cleavage to elute the bound protein. His-Tag purification was
performed on a HiTrap FF nickel chelating column (GE Healthcare) equilibrated
with 20mM imidazole in buffer B (20mM Tris pH 7.4 and 150mM NaCl) followed
by a gradient elution with 500mM imidazole in buffer B. The His-tag-eluted
proteins were further purified by ion exchange using a Mono Q 5/50 GL column
equilibrated with 25mM NaCl in 20mM Tris pH 8.5 and eluted with 1M NaCL in
20mM Tris pH 8.5. Gel filtration was carried out on a HiLoad 16/60 Superdex 200
column equilibrated with buffer A. All fractions were analysed by SDS–
polyacrylamide gel electrophoresis and Coomassie staining, fractions containing
fluorescent proteins were pooled and concentrated with a Vivispin 15R (Sartorius
Stedim) before proceeding to subsequent purification steps. Protein concentration
was measured using a Nanodrop A 280 module with entered values for protein
molecular weight and molar extinction coefficient.

Single-molecule imaging. All cortical neurons were transfected with either
munc18 or syntaxin1a fused to PAmCherry. All PALM and dSTORM experiments
were performed using an Olympus IX-81 microscope equipped with Olympus
Cell^R acquisition software, an ImageEM EM-CCD 512� 512 camera (Hama-
matsu UK) and an Olympus � 150 UAPO 1.45NA oil lens with a resulting pixel
size of 106 nm. For dSTORM, endogenous proteins were immunolabelled, after
90min fixation in 4% (w/v) buffered paraformaldehyde with primary antibodies
(munc18-1 (BD), syntaxin1a (HPC-1)). Both immunodetected munc18-1 and
syntaxin1a were subsequently labelled with Alexa-647-conjugated anti-IgG
(Invitrogen).

TCSPC measurements were made under 800–820 nm two-photon excitation,
which efficiently excited cerulean without any measurable excitation or emission
from EYFP, using a non-descanned detector (R3809U-50) multichannel plate-
photomultiplier tube or a fast photomultiplier tube (H7422; both Hamamatsu
Photonics UK) coupled directly to the rear port of a Zeiss LSM-510 Axiovert
microscope. Images were recorded at 256� 256 pixels from a 1,024� 1,024 image
scan with 256 time bins over a 12-ns period54. Off-line FLIM data analysis used
pixel-based fitting software (SPCImage, Becker & Hickl). During all FRET
experiments, neurons were bathed in phenol-free supplemented NBA (as described
above) and maintained at 37 �C in 5% (v/v) CO2, 95% (v/v) air in a POC chamber
(LaCon).
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mEPSC recordings. Cortical neuron cultures were washed and maintained in
‘stimulation’ buffer (136mM NaCl, 2.5mM KCl, 10mM glucose, 10mM HEPES
(pH 7.4), 2mM CaCl2, 1.3mM MgCl2). Individual neurones were identified by
light microscopy and the cell bodies subjected to whole-cell voltage clamp or
current clamp using a HEKA EPC7 amplifier (HEKA Elektronik Lambrecht/Pfalz
Germany). Data were acquired using ‘Clampex’ and analysed using Clampfit
(Molecular Devices, LLC, CA, United States, version 10.3). Recordings were made
at 18–20 �C using AgCl2 electrodes and filamented borosilicate glass patch pipettes
with resistances of 3–7MO. The bath solution contained stimulation buffer and the
pipette solution contained (mM); 100 K-Gluconate, 20 KCl, 1 CaCl2, 1 MgCl2, 10
HEPES, 3 Phosphocreatine Na, 11 EGTA-KOH, 9 D (þ )-Sucrose, 4 ATP-Mg2; pH
7.2; 295mOsmkg� 1. Cells were judged suitable for recording if the holding cur-
rent at � 60mV holding potential was less than � 100 pA. Voltage clamp was
recorded in 10mV steps from � 70 to þ 80mV every 2 s. To mimic bath sti-
mulation, cells were current clamped to � 60mV and stimulated at 20Hz for 60 s.

FCS and neuronal stimulation. All FCS recordings were acquired using a Leica
SP5 SMD confocal microscope using a � 63 1.2NA HCX PL Apo water lens and
488 or 561 nm CW lasers. Photon fluctuation data routed through a Picoquant
PRT 400 router were acquired at microsecond rates using external Single Photon
Avalanche Photodiodes (MicroPhoton Devices, Italy). Neurons were placed in a
custom-made chamber with embedded platinum wires to deliver a stimulus. Cells
undergoing electrical stimulation were immersed in stimulation buffer (136mM
NaCl, 2.5mM KCl, 10mM glucose, 10mM HEPES (pH 7.4), 2mM CaCl2, 1.3mM
MgCl2) and stimulated at 20Hz for 30 s allowing all FCS data to be acquired during
the stimulation train.

FCS calibration. Before each FCS experiment, the values for k (the ratio of the
axial and waist excitation spot dimensions) and Veff were determined using 10 nM
Atto488 and Atto561 (Atto-Tec, Germany) standards in water at either 25 or 37 �C
(Supplementary Fig. 3). Atto488 has a well-established diffusion rate of
400mm2 s� 1 (Picoquant). The resulting Veff and K were verified using 10 nM
purified EGFP and mCherry proteins (25 kDa) and 10 nM fused EGFP-mCherry
protein (50 kDa) in 150mM NaCl, 20mM Tris pH 7.4, 1mM DTT and 0.1% (v/v)
Tween 20. The resulting diffusion coefficients of the fluorescent proteins (EGFP
and mCherry of 124±0.17 and 106±0.12 mm2 s� 1 at 37 �C, respectively; n¼ 10)
are consistent with Stokes–Einstein-estimated diffusion coefficients of 25 kDa
proteins under these conditions. Calibration recordings of 30 s were made for each
standard. These calibrations determined that the effective volume of the FCS spot
was 0.29±0.04 mm3 at 37 �C; all in cellulo FCS measurements were made at this
temperature. This volume is significantly smaller than the volume estimated
recently for central neuronal synaptosomes using electron microscopy (0.37 mm3;
ref. 37).

FCS analyses. Autocorrelation traces were generated from the photon-counting
histograms for each 5 to 30 s measurement using SymPhoTime v5.4.4 software
(Picoquant, Germany). In vitro calibration traces were fitted using the Triplet
model (three-dimensional free diffusion model with triplet state) with informed
diffusion values to yield Veff and k values. Neuronal autocorrelation traces were
fitted using a Triplet Extended model (two-dimensional anomalous diffusion
model with triplet state), this model is designed for fluorescent molecules moving
within a plane, for example, proteins in a membrane. Diffusion within the cells is
expected to be anomalous; therefore, the anomaly parameter was not fixed to one.
The anomaly parameter (a) measures the departure from free Brownian diffusion
(a¼ 1) to either superdiffusion (a41) or subdiffusion (ao1) for a diffusing
species. Autocorrelation curves with (a41) display the sharpest decay, whereas the
those with ao1 decrease quite slowly55.

FRAP measurements and analysis. Photobleaching was carried out in total
internal reflection fluorescence mode at 37 �C using the Olympus Cell^FRAP
hardware attachment in conjunction with the Olympus Cell Excellence total
internal reflection fluorescence system. A circular bleach area of radius 0.742 mm
was selected and bleached between frames 5 and 6 of 50, taken every 31ms, giving
an acquisition rate of 32.3Hz. Image J was used to extract intensity data from the
resulting image files. These data consisted of the mean intensity with three circular
regions of the image (r¼ 0.742 mm)—one (Ifrap) centred on the bleached region,
one outwith the cell or sheet (Iback) and one (Iref) in a region of the membrane
remote from the bleach point. Inorm for each frame was calculated by correcting the
Ifrap value using the Iref data, to account for the general photobleaching that occurs
during acquisition, as well as normalizing to the pre-bleach values, according to
equation 1 below:

InormðtÞ ¼
Iref pre

Iref ðtÞ� IbackðtÞ
� IfrapðtÞ� IbackðtÞ

Ifrap pre
ð1Þ

where Inorm(t) is the normalized intensity; Ifrap(t) the measured average intensity
inside the bleached spot; Iref(t) the measured average reference intensity; and
Iback(t) the measured average background intensity outside the cell. Subscript_pre

means the averaging of intensity in the corresponding region of interest (ROI)
before bleach moment after subtraction of background intensity.

Following the normalization of the data, the diffusion rate associated with the
half-time of recovery for each curve was determined by fitting either a single-mode
hyperbolic model (see equation (2), in which y¼ normalized intensity at time t,
y0¼ normalized intensity at point of bleaching, a¼maximal recovered intensity
and b¼ t1/2, the half-time of recovery of the curve) or a single-mode exponential
model (see equation (3) in which y¼ normalized intensity at time t,
y0¼ normalized intensity at the point of bleaching, a¼maximal recovered
intensity and b¼ ln(0.5)/t1/2, the half-time of recovery of the curve).

y ¼ y0 þ
at

bþ t
ð2Þ

y ¼ y0 þ að1� ebtÞ ð3Þ
The half-time of recovery of these FRAP recovery curves is dependent on the

diffusion rate, as is described in the standard relationship shown in equation (4).

D ¼ o2

4t1=2
ð4Þ

Fits were performed using the software package Sigma-Plot 12.5, and further
calculation carried out using standard spreadsheet software (Microsoft Excel).

Different rates of acquisition were modelled by taking every second frame
(modelling 16.1Hz), every fifth frame (for 6.5Hz), every tenth frame (3.2Hz) or
the frames acquired closest to 0.5 and 1 s intervals from the start of the time lapse
for 2 and 1Hz sampling respectively, and repeating the fitting on these data sets.

Fluorescent monitoring of synaptic vesicle fusion. For experiments using FM1-
43, cortical neurones that were transfected with both munc18 and syntaxin1a were
loaded with 10mM FM1-43 using a maximal stimulus of 50mM KCl in stimulation
buffer. After dye washout, cultures were mounted in a Warner imaging chamber
with embedded parallel platinum wires (RC-21BRFS) and placed on the stage of
Zeiss Axio Observer D1 epifluorescence microscope. Cultures were then subjected
to a train of 60 action potentials (30Hz) to unload the readily releasable pool and
then two trains of 400 action potentials (40Hz) to unloading the remaining vesicles
in the reserve pool. Images were acquired using a Hammamatsu Orca-ER CCD
camera at 480 nm excitation and 4515 emission.

For sypHy experiments, transfected neurons were visualized using the same
optical conditions as for the FM1-43 experiments. Cultures were stimulated with
a train of 600 action potentials delivered at 20Hz during continuous perfusion
with stimulation buffer containing bafilomycin A1 (1 mM) to inhibit vesicle
reacidification.

Statistical methods. Statistical analyses were performed using Sigma-Plot v12.0.
Data sets were first tested for normality using the Shapiro–Wilks test. Data that
fitted a normal distribution were tested for statistical significance by two-tailed
unpaired Student’s t-test. Failing normality, the data were analysed using the
Mann–Whitney Rank-Sum test. All data presented as mean±s.e. Boxplots were
created using the open source BoxPlotR tool as described in ref. 56.
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