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Hydrogen bond rotations as a uniform structural
tool for analyzing protein architecture
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Niels Chr. Nielsen3,9,10, Jakob T. Nielsen3,9,10 & Jørgen E. Andersen1,2,6

Proteins fold into three-dimensional structures, which determine their diverse functions. The

conformation of the backbone of each structure is locally at each Ca effectively described by

conformational angles resulting in Ramachandran plots. These, however, do not describe the

conformations around hydrogen bonds, which can be non-local along the backbone and are of

major importance for protein structure. Here, we introduce the spatial rotation between

hydrogen bonded peptide planes as a new descriptor for protein structure locally around a

hydrogen bond. Strikingly, this rotational descriptor sampled over high-quality structures from

the protein data base (PDB) concentrates into 30 localized clusters, some of which correlate

to the common secondary structures and others to more special motifs, yet generally pro-

viding a unifying systematic classification of local structure around protein hydrogen bonds. It

further provides a uniform vocabulary for comparison of protein structure near hydrogen

bonds even between bonds in different proteins without alignment.
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A
hydrogen bond1 forms between an electronegative atom
(the acceptor) and a hydrogen atom covalently bound to
another electronegative atom (the donor). Hydrogen

bonds are of key importance in determining and fine-tuning
molecular structure, interaction, function2 and specificity of
molecular recognition3. It is widely recognized that the function
of a protein is intimately linked to the three-dimensional (3D)
structure of its native folded state. Besides polypeptide assembly
through covalent bonds, the structure is determined and
stabilized by van der Waals interactions, hydrophobic packing,
hydrogen bonds and ionic interactions. As hydrogen bonds
are readily broken and reformed, they determine alternative
conformations, and hence are also important for conformational
changes of proteins.

Dihedral angles specify the backbone conformation of proteins
by providing a complete 2D description of the progression from
one peptide unit to the next along the backbone, as displayed in
the well-known Ramachandran plots4. However, dihedral angles
are not reliable when considering relative configurations, which
are separated far apart along the backbone.

As the geometric phase space of hydrogen bonds has large
dimension a priori, 3D and 4D simplifications have captured only
part of their geometry5,6. Here, we introduce a systematic 3D
descriptor of main chain hydrogen bond geometry by assigning to
each hydrogen bond between backbone C¼O and N–H atoms a
spatial rotation, which is evidently independent of the overall
spatial orientation of the protein just as for dihedral angles. The
rotation is simply obtained as follows: First, rotate the entire
protein, such that the donor peptide unit is aligned with the
standard coordinate axes; the subsequent rotation from this
standard location of the donor to the acceptor is the 3D
descriptor of the hydrogen bond. As any rotation is given by a
rotation axis and degree of rotation, it can be plotted in 3D space
as a vector along the rotation axis of length equal to the degree of
rotation. Hence all vectors in 3D space of length at most p
describe all rotations. Rotations can thus be displayed by semi-
transparent 2D projections on the page to graphically represent
the geometry of main chain hydrogen bonds, akin to
Ramachandran plots of dihedral angles for backbone geometry.

Using a set of high-quality structures culled from the PDB7 to
probe the conformational space, we measure the rotations for the
totality of hydrogen bonds (1.16 M hydrogen bonds) from all
these structures and find, amazingly, that all the rotations
concentrate into 30 well-defined clusters, which together
comprise just over 32% of the volume of rotational space. In
fact, 93.4% of all the rotations are contained in the seven biggest
clusters occupying just under 20% of the volume of rotational
space. This is particularly striking, as we find that fully 95% of the
volume of rotational space is accessible when describing atoms as
rigid spheres, whereas still 50% is available when modelling the
hydrogen bonding of peptides with Density Functional Theory
(DFT), accepting all bonds of at least 0.1 eV hydrogen bond
strength. By analyzing the resulting data, we conclude that this
rotation descriptor alone determines the relative configurations of
the two peptide planes involved in the hydrogen bond, with one
exception, which is explained in detail below.

Our clusters correlate with well-known patterns such as a, 310
and p-helices, parallel and antiparallel b-structures, and further
provide a collection of motifs found in random coil and turn
elements of protein structure. All of this is obtained from our new
systematic uniform viewpoint of rotations associated to backbone
hydrogen bonds.

In this way, the rotational descriptor provides a uniform
viewpoint on local structural motifs around main chain hydrogen
bonds in proteins. Practically speaking, as each such cluster
displays specific structural characteristics, the associated

classification of hydrogen bond geometry is useful in studying
specific protein function and conformational changes. It further
gives a novel vocabulary and a quantitative measure by which one
can compare local configurations around hydrogen bonds within
each structural element of a protein as well as between such, and
even for hydrogen bonds from different proteins without
requiring alignment.

Results
The rotational descriptor of main chain hydrogen bonds. We
associate a triple of orthogonal unit vectors (that originated in
earlier work8) to the ith peptide unit Pi along the backbone by
using only main chain coordinates. The first vector is the unit
vector from the centre of the carbon atom C to the centre of the
nitrogen atom N in the ith peptide bond. The second vector is
obtained by rotating the first vector 90� towards the oxygen atom
O in the same peptide plane, and the last vector is the cross-
product of the two first (Fig. 1a and Methods). For each i, there is
a unique rotation RPi , which brings the unit vectors parallel to
the x, y and z axes to the triple associated to the ith peptide unit
Pi. To a hydrogen bond from donor peptide unit Pi to acceptor
peptide unit Pj, we assign the rotational descriptor

RH
i;j ¼ ðRPiÞ

� 1RPj ð1Þ

(Fig. 1a and Methods). According to Euler’s rotation theorem9,
a rotation is determined by an axis, that is, a vector ~o ¼ x; y; zð Þ
of unit length, together with an angle y (in radians) of rotation
around it. We plot such a rotation as a point y~o ¼ yx; yy; yzð Þ in
3D space conveniently imagined as a sphere of radius p
representing all rotations, so-called rotational space plots
(Fig. 1b, where we stress that antipodal points on the surface
sphere of radius p represent the same rotation). This descriptor of
a hydrogen bond together with the translation vector rotated by
R� 1

Pi (blue arrow, Fig. 1a) from the center of mass of the donor
peptide unit to the center of mass of the acceptor peptide unit
completely describes the relative positions of a pair of peptide
units. However, it is only the rotational part studied here that
exhibits the characteristic clustering; in fact, the rotation
substantially determines the translation for main chain
hydrogen bonds (see discussion below), and hence our 3D
rotational descriptor likewise determines the geometry of the
hydrogen bond.

Specification of the protein databases. We study three basic
classes of databases. Two are derived from PISCES10 runs with
PDB7 on 12 March 2012:

HQ : Res � 2:0Å and Rfac � 0:2;

LQ : Res � 3:0Å and Rfac � 0:3;
ð2Þ

which are taken at 15, 30, 60 and 95% sequence identity. The
third set is the CATH11 v.4.0.0 library at the levels CATHS,
CATHSO, CATHSOL together with ‘CATH’, a set identified by
the CATH developers at the CATH—CATHS level of their
database. See Supplementary Note 1 for further specification
of the databases. A Dictionary of the Secondary Structure of
Proteins (DSSP)12 hydrogen bond is accepted provided13

furthermore that:

HO� distanceo2:7Å;

angle ðNHOÞ; angle ðCOHÞ490�:
ð3Þ

We remark that our condition for accepting a hydrogen bond
depends on the location of the H atom at the amide end in each
hydrogen-bonded peptide unit. Please see Supplementary Note 2
for a discussion of the determination of the H atom locations.
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Our reference library is HQ60, namely, high-quality data at 60%
sequence identity containing 1.16 M hydrogen bonds. A density
plot of the raw data (Fig. 1b–d and Supplementary Fig. 1) reveals
remarkably that the rotations cluster and concentrate in a
relatively small volume of rotational space.

Cluster determination. Several runs of the clustering algorithm
detailed under Methods were performed. A first run of the
clustering algorithm using all the data together resulted in 14
clusters comprising 499.99% of all the data. Inspection of most
of these clusters revealed that the mode box was composed pri-
marily of hydrogen bonds of one fixed length along the backbone.
Also, an examination of the translation vectors for these

14 clusters pointed to further limited sub-clustering. For this
reason, we refined the analysis by making a separate clustering for
each signed difference D from donor to acceptor. Precisely, if the
hydrogen bond is from donor peptide unit Pi to acceptor peptide
unit Pj, then D¼ j� i if ioj and otherwise D¼ j� i� 1 (Fig. 2).

For |D|46, we did not find any differences in the clustering
results, and thus all data with |D|46 were combined into a ‘long-
range’ group. Thus, we considered separately D¼ � 2, D¼ 2,
D¼ � 3, D¼ 3, D¼ � 4, D¼ 4, D¼ � 5, D¼ 5, D¼ � 6, D¼ 6
and |D|46. The clustering algorithm discussed above was run for
each of these length categories and resulted in 29 clusters. For
each of these clusters, the corresponding translation vectors were
considered, and except for the main cluster with D¼ � 3, the
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Figure 1 | Density plot of distribution of all hydrogen bond rotations in PDB-HQ60. (a) Hydrogen bond from peptide units Pi to peptide unit Pj, where the

locations of the backbone atoms Ca
i , Ci and Niþ 1 (C

a
i , Cj and Njþ 1) determine a rotation RPi RPj

� �
. Rotation of both peptide units by the inverse of

RPi brings Pi in standard position, Pni and Pj to a new position Pnj and the rotation bringing Pni to Pnj is the rotation RH
i;j ¼ R� 1

Pi
RPj associated to the hydrogen

bond. The blue arrow from the center of mass of Pni to Pnj is the translation associated to the hydrogen bond. (b) 3D rendering of the total distribution

coloured by density. (c) Orthoscopic projection of the density plot in the x–y plane. (d) Orthoscopic projection of the density plot in the x–z plane.
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translations did not point to any further sub-clustering. For the
main cluster with D¼ � 3, there was a clear division into two
sub-clusters as illustrated in Supplementary Fig. 2. In this way, we
ended up with the total of 30 clusters listed in Table 1 and plotted
in Fig. 3. The notation for the clusters with |D|r6 is

j D j SignðDÞa;b;c; ... ð4Þ

where the subindex is an alpha-numeric enumerator, indexing
clusters according to decreasing size (measured in terms of data
points in clusters) for a given value of D. For the clusters
with |D|46, we use the notation La,b,c,y, where again the
alpha-numeric enumerator indexes clusters according to
decreasing size.

We have further listed the volume (given in % of the total
volume of rotational space), the average and maximal distance
within a cluster to the mode and the average distance to the mode
among the top 70% of the density. The latter being a measure for
how peaked the cluster is with a small value, indicating a peaked
distribution and a large value a flat distribution. We observe that
even though cluster 4�

a contains almost half of the hydrogen
bonds, it only occupies a little o2.5% of the volume. It is the
most peaked cluster, about two times more so than 3�

a and 3.5
times more so than La and Lb, which are the other large clusters.
We further observe that La and Lb have considerably larger
volume than any other cluster. We see that 4�

b , 6�
a and La have

the largest possible maximal distance to the mode, namely p. We
observe that 93.4% of the data are contained in the seven largest
clusters 4�

a , La, Lb, 3�
a , 3�

b , 5�
a , 2�

a , which together occupy just
below 20% of the volume of rotational space. Supplementary

Fig. 3 provides for each cluster a plot showing the maximal,
minimal and average logarithmic density as a function of distance
to the mode. This provides a more detailed description of how
peaked the individual clusters are.

In Fig. 4 we provide a sample structure for each of the 30
cluster, whose rotation belongs to the mode of the given cluster.

The original 14 modes from the run with all hydrogen bond
rotations together, independent of D can be found as the modes
of the final clusters 2�

a , 2�
b , 2�

c , 3�
a , 3�

c , 3�
e , 4�

a , 4�
b , 5�

a , 5�
c ,

6�
b , La, Lb and Ld. As can be seen, none of the original modes
correspond to the D40 length categories. This reflects the fact
that the modes of D40 clusters are all close to the modes of the
long-range clusters La,y,Lf.

Clustering has also been analyzed using all of the above-
mentioned data sets and the less stringent DSSP12 definition of
hydrogen bonds with substantially the same conclusions as with
the high-quality PDB-based libraries in this paper. To further
access the stability of the clusters under change of the clustering
algorithm, we have also implemented the Mean shift clustering
algorithm14–16, which similarly reproduces the same clustering
with minor variations. Please see Supplementary Note 3 for a
discussion of the selection of the clustering algorithms and
Supplementary Note 4 and Supplementary Table 1 for a
comprehensive comparison of all clustering runs.

Hydrogen bonds clusters and Ramachandran plots. To
demonstrate that there, in general, are no relations between our
3D rotational descriptor of hydrogen bonds and the Ramachan-
dran plots at the flanking Ca, we have in Supplementary Fig. 4
plotted the Ramachandran plots for all the hydrogen bonds in a

Table 1 | Characteristics of the 30 clusters in rotational space based on PDB-HQ60.

Cluster P(all) P(mode) Rotational space Mode Ave. translation Volume Ave. dist. Max dist. Peakedness

2�
a 16,327 203 3.03 (�0.28, �0.78, 0.56) (�0.73, � 2.27, 1.50) 0.50% 0.268 1.253 0.189

2�
b 1,249 16 2.86 (0.22, 0.86, 0.46) (�0.45, � 2.52, � 1.13) 0.20% 0.285 1.059 0.188

2�
c 110 3 2.46 (�0.33, �0.73, �0.60) (� 1.11, � 2.01, � 1.70) 0.03% 0.393 1.283 0.225

3�
a 164,832 1213 2.50 (�0.29, 0.92, �0.28) (2.05, � 3.66, �0.27) 1.38% 0.341 1.729 0.240

3�
b 16,761 156 2.89 (�0.45, 0.83, �0.33) (2.56, � 3.46, 1.46) 0.79% 0.338 1.429 0.234

3�
c 7,706 77 2.55 (0.31, �0.87, �0.38) (2.03, � 3.76, 0.01) 0.48% 0.292 1.135 0.202

3�
d 5,490 34 2.86 (0.45, �0.74, �0.50) (2.48, � 3.28, � 1.57) 0.57% 0.416 1.508 0.301

3�
e 321 6 2.78 (�0.29, 0.90, 0.32) (2.09, � 3.13, � 1.97) 0.08% 0.240 0.537 0.185

4�
a 504,642 16030 1.08 (�0.32, 0.93, �0.17 ) (2.88, � 3.77, 0.19) 2.42% 0.214 2.045 0.129

4�
b 1,969 10 2.16 (�0.84, 0.41, 0.36) (3.55, � 3.01, �0.13) 0.68% 1.222 3.139 0.702

5�
a 16,500 74 2.41 (�0.63, 0.73, 0.26) (3.16, � 3.35, � 1.25) 1.21% 0.394 2.797 0.271

5�
b 3,661 15 0.57 (�0.64, 0.60, �0.48) (3.11, � 3.34, 1.23) 0.67% 0.499 1.967 0.334

5�
c 3,406 50 2.05 (�0.56, 0.67, 0.50) (3.77, � 2.44, � 1.58) 0.29% 0.239 1.26 0.164

5�
d 1,907 17 0.51 (�0.62, 0.74, 0.26) (3.3, � 3.41, �0.40) 0.30% 0.296 1.218 0.206

5�
e 295 10 0.77 (�0.23, 0.96, �0.18) (3.01, � 3.57, �0.52) 0.08% 0.247 1.195 0.147

6�
a 1,964 7 1.95 (�0.52, 0.75, 0.40) (3.11, � 3.07, �0.89) 0.68% 0.880 3.141 0.430

6�
b 1,308 11 1.49 (�0.99, �0.01, 0.12) (3.33, � 2.72, 1.56) 0.31% 0.420 1.987 0.235

2þ
a 266 2 2.71 (0.57, �0.75, �0.34) (2.59, � 3.80, �0.67) 0.12% 0.668 2.001 0.440

3þ
a 6,965 31 2.55 (0.54, �0.79, �0.29) (2.29, �4.02, �0.40) 1.10% 0.563 3.139 0.319

3þ
b 2,088 20 2.80 (0.59, �0.80, 0.08) (2.63, � 3.81, 0.85) 0.46% 0.452 1.546 0.293

3þ
c 707 5 2.41 (�0.68, 0.69, �0.24) (2.60, �4.02, 1.00) 0.29% 0.493 1.485 0.331

4þ
a 6,848 24 2.54 (0.52, �0.83, �0.21) (2.38, � 3.92, 0.21) 1.34% 0.605 3.136 0.358

5þ
a 4,525 16 2.67 (0.57, �0.80, �0.18) (2.43, � 3.90, 0.36) 1.10% 0.668 3.120 0.408

6þ
a 1,325 4 2.67 (0.54, �0.81, �0.23 ) (2.48, � 3.72, 0.69) 0.52% 0.881 2.380 0.647

La 242,357 437 2.82 (0.61, �0.79, 0.00) (2.44, � 3.90, 0.48) 7.62% 0.591 3.141 0.398
Lb 127,879 227 0.21 (�0.78, 0.63, 0.06) (3.00, � 3.51, 0.13) 5.97% 0.591 2.512 0.392
Lc 13,727 33 1.63 (�0.56, 0.80, �0.20) (2.77, � 3.60, �0.57) 1.81% 0.513 2.322 0.355
Ld 8,747 48 2.79 (�0.65, 0.70, �0.30) (2.35, �4.04, 1.26) 0.93% 0.383 1.436 0.269
Le 1,221 7 1.96 (�0.51, 0.79, 0.35) (2.84, � 3.25, � 1.52) 0.30% 0.352 1.235 0.272
Lf 808 7 1.84 (�0.82, 0.35, �0.45) (2.79, � 3.21, 2.06) 0.24% 0.370 1.268 0.260

For each cluster, the table lists the total number of points (P(all)), the number of points in the box (see Methods) at the mode in rotational space (P(mode)), the mode point of the rotations (rotational
space Mode), average translation (Ave. translation), the volume of the cluster as a percent of the total volume of rotational space (Volume), average (Ave. dist.) and max distance (Max dist.) from data
points to the mode of the cluster and the maximum distance to mode for the top 70% of the density (Peakedness).
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given cluster for each of the four locations indexed as indicated
in Fig. 2.

None of the 15 biggest clusters exhibits a strong localization of
any of the four Ramachandran plots. All large clusters and most

of the small clusters have a broad spread of the flanking
conformational angles. Hence our 3D rotational descriptor of
hydrogen bonds is akin to the Ramachandran plots but is by no
means determined by the flanking Ramachandran plots.
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Certain clusters do, however, have significantly higher density
at certain conformational angles. The large cluster 3�

a has a peak
at the conformational angles of the 310 helix, 4�

a at the a helix
and La and Lb at the b-strand conformational angles. We also in
part see this for some of the short-range clusters at certain of the
positions R1,y,R4, for example, for clusters 2�

b , 2�
c , 3�

e , 5�
d , 5�

e ,
6�
b . It is, however, still clear that we do not even in these cases see
a localized single cluster behaviour, except for the following very
small clusters 5�

d , 5�
e , 3�

b R4ð Þ and 3�
c R3ð Þ. All of this fits well

with the following analysis of the primary and secondary imprints
of our clusters and the following correlation analysis between our
clusters compared with known structural motives.

Characterizing primary/secondary structure imprints. To
explore the primary/secondary propensities of the clusters, we
evaluate the primary and secondary structure of the four residues
of the donor and acceptor peptide units. The residues are
annotated R1, R2, R3 and R4 as in Fig. 2, where R2 contains the
donor amide and R3 contains the donor carbonyl. The residue
distribution for the clusters is plotted in the left column of
Supplementary Fig. 5.

Clusters 2�
b and 2�

c have a 30% occurrence of Glycine at
position R1¼R4. 3�

b and 3�
c have a 70% occurrence of Glycine at

position R1, whereas 3�
d has a 65% occurrence of Glycine at R4.

The cluster 3�
e has 95% Proline at R1. These findings correspond

closely to the known residue preferences for g and b turns.
Cluster 4�

b has a 20–40% occurrence of Glycine at R1,y,R4

showing that this longer turn motif requires a Glycine to bend the
backbone, with the position of the Glycine being less important.
As we will observe below, 5�

a , 5�
c and 6�

a have similar hydrogen
bond rotational geometry, which is also reflected here by a shared
preference for Glycine at R1 of 60–95% and a preference for
Leucine at R2 of 20–35%. A few smaller preferences are observed
for the þ -clusters: 2þ

a has a preference for Glycine at R1 of 40%
and R2 of 20%; 3þ

c has 25% Serine at R2; 4þ
a and 5þ

a have a
20–30% preference for Aspartic acid at position R2. Long-range
clusters Lc, Le and Lf show a 20–40% preference at R1 or R2. In
conclusion, the primary sequence of the clusters is only a weak

signal characterized by Glycine, Proline and other amino acids
that provide special backbone conformations.

The primary sequence signatures of residue four-tuples were
likewise investigated, but no highly occurring four-tuple patterns
were observed (please see Supplementary Table 2).

Next, we investigate the secondary structure patterns of the
clusters by using the DSSP12 annotation. DSSP annotates residues
with seven secondary structure classes based on backbone
geometry: H¼ a helix, B¼ residue in isolated beta-bridge,
E¼ extended strand, participating in beta ladder, G¼ 3-helix
(310 helix), I¼ 5-helix (p helix), T¼ hydrogen bonded turn,
S¼ bend, –¼ unclassified. The secondary structure preferences
were plotted in Supplementary Fig. 5 (right column). Cluster 2�

a
is identified as unclassified by DSSP, whereas 2�

b and 2�
c are

identified as S or T, respectively. Cluster 3�
a shows a signal for 310

helix, a helix and turn on R1�4, which is in accordance with our
ideal correlation of both 310 helix and beta-turn type I discussed
below. Clusters 3�

b and 3�
e have the pattern T–T, whereas 3�

c
and 3�

d are predisposed to TEET and correlated to beta turns.
Cluster 4�

a has a very strong HHHH signature, which
corresponds to a helices consistent with the further analysis
below. Cluster 4�

b has a weaker DSSP predisposition, but shows
preference of 40% for H at R124 and 50% for T at R12. All 5� and
6� clusters have a strong preference for HH at R34. Cluster 2þ

a
has ESSE pattern, whereas the remaining þ -cluster and L-cluster
have mainly E (beta) annotations.

Turns and helixes. For hydrogen bonds between peptide units in
helixes and turns, we can compute the corresponding rotations as
described under Methods. The natural distance measure between
two rotations is the geodesic distance also recalled in the Method
section. Table 2 lists the distances between the modes of clusters
with backbone length D between � 2 and � 5 and the respective
ideal structures (Fig. 5). Thus, the modes of cluster 2�

a and 2�
b

closely correspond to the ideal gamma turns (Fig. 5a). Cluster 4�
a

has its mode exactly at the ideal a helix, whereas the mode of
cluster 4�

b is close to the alpha turn I� aRU (Fig. 5c). Alpha turn
IRS lies in 4�

a , whereas the remaining alpha turns lie in 4�
b . For

Table 2 | Distances between cluster modes and idealized gamma/beta/alpha/pi-turns.

Mode Gammaþ Gamma�
2�
a 2.30 0.19

2�
b 0.21 2.09

2�
c 0.90 2.42

Mode 310 I I’ II II’ VIa1 VIA2 VIb VIII

3�
a 0.19 0.38 1.89 0.95 1.72 1.91 1.28 1.79 2.20

3�
b 0.67 0.41 1.75 0.46 1.66 1.84 1.00 1.84 2.28

3�
c 1.88 2.02 0.18 1.88 0.80 0.68 1.16 2.87 2.41

3�
d 1.99 2.10 0.39 2.02 0.35 0.17 1.01 2.67 2.23

3�
e 1.27 1.52 1.00 1.76 0.71 0.83 1.05 2.99 2.89

Mode Alpha helix (R) Alpha helix (L) IRS ILS IIRS IILS IRU ILU IIRU IILU

4�
a 0.01 2.64 0.43 1.90 0.69 2.64 1.98 2.89 2.70 2.43

4�
b 1.67 2.91 1.34 2.98 1.62 2.59 0.47 2.02 1.36 1.76

Mode Pi Helix HB-AAAa HB-PgAA HB-AAAA Schellman

5�
a 2.22 0.37 1.93 1.79 0.19

5�
b 0.44 2.37 0.65 1.09 2.04

5�
c 1.88 0.89 1.67 1.38 0.48

5�
d 0.32 2.27 0.65 0.84 1.89

5�
e 0.60 2.17 0.99 1.26 1.87
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length D¼ � 5 clusters, the mode of 5�
a is particularly close to

the Schellman motif and also close to HB-AAAa. The modes of
clusters 5�

b , 5�
d , 5�

e are closets to the ideal p helix rotation and
5�
c is closets to the Schellman motif. Pi turn HB-PgAA lies in
cluster 5�

b and HB-AAAA in 5�
d (Fig. 5d). The cluster to which

the exact ideal hydrogen bond rotation either belongs or is closest
to, for each motif, is given in the last column of Supplementary
Table 3.

To further investigate the beta turns, we have for each of the
five clusters 3�

a ,y,3�
e calculated the occurrences of the eight

turn types (Supplementary Table 4). Using the conformational
angles in Supplementary Table 3, a turn belongs to a turn type17 if
three angles deviate o30� from the ideal values and the last
deviates by at most 45�.

From the Supplementary Table 4, it appears that cluster 3�
a is

dominated by 310 helices and beta turn I, cluster 3�
b by beta turn

II, 3�
c by beta turn I0, 3�

d by beta turn II0, and cluster 3�
e by beta

turn VIa1 although this turn is found in 3�
d and 3�

a as well. The
distances from the mode points of the clusters to the ideal
structures confirm these findings (Fig. 5b).

To estimate the proportion of the bonds in clusters 3�
a , 4�

a and
5�
b , 5�

d , 5�
e , which are involved in helical patterns, we have

computed the proportion of the bonds in the cluster, which are
flanked by bonds from the same length category. As it appears
from Supplementary Table 5, 80% (of which 17.5% are at ends) of
the bonds in 4�

a are involved in a-helixes, 39.5% (of which 35.5%
are at ends) in 310 helixes. The majority of bonds from 5�

d and
half of the bonds in 5�

e and B30% of the bonds from 5�
b are

involved in p-helices.
Beta turns VIa2, VIb and VIII are special in the sense that the

hydrogen bonds calculated from the backbone conformational
angles assuming idealized geometry are not to be found in the
data set of hydrogen bonds. A closer study reveals that indeed
these turns do not conform to idealized geometry, and hence one
can simply not compute their rotations using conformational
angles. The rotational space distance between the hydrogen
bond rotation and the rotation calculated from the backbone
conformational angles as RH ¼ ðRB

Tð2ÞÞ
� 1ðRB

Tð1ÞÞ
� 1 assuming

idealized geometry (and cis conformation in peptide plane two
for VIa2 and VIb) are of the order 1–3 in distance instead of the
order 0.2 in distance when idealized geometry holds. This
demonstrates further the utility of over rotational descriptor,
which in this case is much more accurate than backbone
conformational angles.

Δ = –2

2b
–

y

z

2c
–

2c
–

γ –

γ +

Δ = –3
y

z

βI’
βII

βI
βII’

310

αleft

αright
4b

–

Δ = –4
y

z
5a

–

5c
–

5d
–

5e
–

5b
–

Δ = –5
y

z
Schellman

π

Δ = –6
y

z

Δ = +3
y

z

Δ =+2,4,5,6
y

z

Ld

|Δ| > 6
y

z
βp

La

Lc

Lf

Le

3b
– 3a

–

3d
–

3c
–

4a
–

3e
–

6a
–

6b
–

3b
+

3a
+

3c
+

5a
+

6a
+

4a
+

2a
+

Figure 5 | Comparison between ideal motives and clusters. For each signed length D along the backbone, the clusters are plotted (in red, green, blue

and orange) with indication of the mode location of the cluster together with the location of some of the ideal structures in rotational space: g± for 2� ,

bI, bII, bI0, bII0 for 3� , aright, aleft for 4� , Schellman, p for 5� and bp for L. The letters a to h indicate the different length categories.

Table 3 | Relation on mode point rotations for long-range clusters and extended b-strands.

Relation Orientation La Lb Lc Ld Le Lf

RB
aR� 1RB

a Anti 0.38 0.57 0.30 0.42 0.76 1.33

RB
a

� �� 1R� 1 RB
a

� �� 1
Anti 0.52 0.28 0.29 0.28 0.28 0.80

RB
pR� 1 RB

p

� �� 1
Parallel 0.43 0.11 0.45 0.45 0.49 0.69

RB
aR� 1RB

p Anti 0.30 0.63 0.28 0.23 0.73 1.11

RB
p

� �� 1
R� 1 RB

a

� �� 1
Anti 0.40 0.43 0.52 0.16 0.35 0.60

RB
a

� �� 1R� 1RB
p Parallel 0.52 0.35 0.53 0.50 0.66 0.98

RB
p

� �� 1
R� 1RB

a Parallel 0.57 0.30 0.29 0.42 0.59 0.85

Rotation angle 2.82 0.21 1.63 2.79 1.96 1.84

The table list the distances between the modes R and the transformed mode as given by one of the relations. Included are also the rotation angles (in radians) for the mode point of the clusters.
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Long-range clusters. For long-range hydrogen bonds, we can of
course not proceed in the same way as for turns and helixes,
moving very long distances along the backbone. We proceed
instead inductively as described under methods.

Using the notation from the Method section, Table 3 list the
distances between RH and RH

1 with RH , one of the six mode
points for the long-range clusters and RH

1 is given by either (15),
(16) or (17) (with the distance the same for the two parts of the
latter). The table also considers the relations appropriate for the
case of a parallel and antiparallel beta strand being part of a beta
sheet. The relations then involve both of RB

a and RB
p .

The mode of cluster Lb is close to the ideal extended parallel
beta strand. The modes of clusters La and Ld are both close to the
ideal extended antiparallel case, and both have a rotation angle
close to p. Clusters Lc, Le and Lf all have an intermediate rotation
angle. The mode of cluster Lc is close to solving both of (15) and
(16), whereas the mode of cluster Le is close to solving the latter
only (Fig. 5h). The mode of cluster Lf seems unrelated to extended
beta strands. Actually, Lf is the only cluster for which the
transformed mode R1 of the mode point R is closer to the mode
point of another cluster than to R itself for the two antiparallel
transformations (being closer to the mode point of Lc, the
distances being 1.11 and 0.77 from the two first entries of
Table 3). The mode of cluster Ld is very close to solving the
equations when a parallel and antiparallel beta strand are
neighbours in an antiparallel fashion. The mode of cluster La
has the same property, whereas the mode of cluster Lb fits the
corresponding equations when the two strands are neighbours in
a parallel fashion.

Looking at the Ramachandran plots for all of the clusters in
Supplementary Fig. 4, we see that, apart from the extended
parallel and antiparallel beta strands, each cluster contains
hydrogen bonds not related to these structures. Please see
Supplementary Fig. 6 and Supplementary Note 5 for further
discussion of this point.

Beta hairpins. Hydrogen bonds from beta hairpins will by their
very nature appear in several clusters. Take as an example a 2:2
hairpin, where the inner hyrogen bond of the loop is a Beta turn
(3� clusters) and the next hydrogen bond along the strand
belongs to one of the 3þ clusters.

Table 4 gives the number of potential beta hairpins of the form
described under Methods in the various clusters and the cluster
annotation of the next hydrogen bond RH

1 along the beta strand.
Among 2:2 hairpins, as defined above, more than half are found
in the combination 3�

c ; 3þ
a

� �
with the second largest group in the

combination 3�
a ; 3þ

c

� �
. There are a few cases of 4:4 and 5:5

hairpins giving rise to the combinations 5�
a ; 5þ

a

� �
and 6�

a ; 6þ
a

� �
.

Hairpins involving the long-range clusters are primarily found in
La, namely in the combinations 3þ

a ; La
� �

, 3þ
b ; La

� �
, 4þ

a ; La
� �

,
5þ
a ; La

� �
and 6þ

a ; La
� �

. The only exception is a small number of
2:4 hairpins in the combination 3þ

c ; Ld
� �

. The existence of beta
hairpins in 3þ

a , 4þ
a , 5þ

a , 6þ
a helps explain the proximity of the

modes of these clusters and the mode of long-range cluster La.

Accessible part of the rotational space. To assess, from a steric
viewpoint, which part of rotational space is available for hydrogen
bonding, we performed the following computation: all atoms of
two free peptide units were described as rigid spheres and a
search of translations was made to identify if the hydrogen bond
criterion from DSSP and condition (3) could be met without any
overlap of the rigid spheres occurring for non-covalently bonded
atoms.

For each grid point (grid size 2p/81) inside the sphere of radius
p, up to 21,952 different translations were tested against the
hydrogen bond recognition criteria. If a translation resulting in an
acceptable hydrogen bond was found, then the above test was
performed. With these constraints, it was found that 95% of
rotational space had at least one possible translation that resulted
in a hydrogen bond (Fig. 6c). The observed high-density regions
in rotational space are thus not a consequence of steric
constraints alone. As the default restrained refinement of
structures obtained by X-ray crystallography only includes a
standard set of stereo-chemical restraints (covalent bonds,
angles, dihedrals, planarities, chiralities, non-bonded), the just
mentioned analysis further demonstrates that the observed
clustering cannot be seen as a consequence of this refinement
process either.

Local hydrogen bond energy landscapes. To probe the (non)-
locality of the formation of the clusters in rotational space, we
modelled hydrogen bonds between backbone peptide units by
Density Function Theory (DFT), which has proven to be suc-
cessful in describing basic secondary structure motifs18,19. We
first probe the energy landscape of rotational space by modelling
two peptide units as described under Methods.

The resulting energy landscape (Fig. 6a), which in this case is
twofold symmetric, describes, to some extend, the same overall
part of rotational space as the experimental PDB based clustering
shown in (Fig. 1b–d). Because of symmetry, the global minimum
appears twice in rotational space. Two bonding classes are defined
by which the O-lone pair is used (the methyl-side or the nitrogen
side of the carbonyl) (Fig. 6a). The two classes of hydrogen
bonding between two N-methylacetamide molecules span two
large volumes of rotational space, meaning that the bonding is
rather insensitive to the relative rotation of the two molecules;
intrinsic properties of the hydrogen bond define the overall
volume of spatial rotations. However, we must conclude that the
fine clustering, which our analysis of PDB results in, does not
arise from two free isolated peptide units, interacting in a single
hydrogen bond. This strongly highlights the non-locality and
importance of this observed clustering of rotations across
hydrogen bonds in protein structures.

Next we analyzed the influence of local backbone constraints
on the energy landscape by modelling two fused methylacetamide
molecules, which further interacts via an hydrogen bond from the

Table 4 | Probing for Beta hairpins in the various clusters.

Cluster Total Hairpin Candidate
hydrogen bonds R

Position
of R1

Distance

3�
a 164,823 2:2 479 3þ

c 0.26
3�
b 16,759 2:2 366 3þ

b ,3þ
c 0.77,

0.26
3�
c 7,706 2:2 1495 3þ

a 0.30
3�
d 5,489 2:2 195 3þ

a 0.51
4�
a 504,563 3:3 143 None

4�
b 1,969 3:3 80 4þ

a 0.79
5�
a 16,498 4:4 131 5þ

a 0.63
6�
a 1,963 5:5 127 6þ

a 0.77
3þ
a 6,965 2:4 661 La 0.55

3þ
b 2,088 2:4 774 La 0.47

3þ
c 707 2:4 31 Ld 0.43

4þ
a 6,848 3:5 750 La 0.41

5þ
a 4,525 4:6 655 La 0.40

6þ
a 1,325 5:7 169 La 0.43

Total number of bonds in the cluster (Total), type of hairpin (Hairpin), number of bonds with
conformational angles around the ideal antiparallel (Candidate hydrogen bonds), cluster
identification for the next hydrogen bond in an antiparallel beta strand, where the next hydrogen
bond is calculated from either (15) or (16) (Position of R1), and rotational space distance of the
next hydrogen bond to the mode of the cluster. Only clusters with at least 10 candidate hydrogen
bonds have been included.
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one peptide unit to the immediate next one along the backbone
(only possible with this short backbone). The configurations were
relaxed as discussed under Methods, but the spanning of
rotational space was limited to situations in which the length of

the hydrogen bond was initially smaller than 3.5 Å; this excludes
fully extended structures, which were also not included in our
analysis of the PDB. The resulting energy landscape (Fig. 6b)
shows two minima corresponding to gþ and g� turns, which
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Figure 6 | DFT calculations for CH3–NH–CO–-CH3 dimer and CH3–NH–CO–CH2–NH–CO–CH3. (a) For each sampled point in rotational space,

a sphere is plotted whose radius is proportional to the Boltzmann weight factor exp(� E/kT) of that point at room temperature with the normalization

constant chosen such that points with 0.1 eV above the global minimum of �0.30 eV vanish. By this procedure, hydrogen bonds of at least 0.2 eV

strength appear coloured in the figure and are found to comprise 32% of the entire volume of rotational space. Assessing the volume taken up by

hydrogen bonds of at least 0.1 eV strength, one reaches 50% of the volume of rotational space.The most stable bonding class is that of the acceptor

molecule binding through the O-lone pair, which is at the methyl side of the carbonyl (red spheres in the figure). The other significant bonding class is that

of the acceptor molecule binding through the O-lone pair, which is at the amide side of the carbonyl (blue spheres in the figure). Both are doubly

degenerate because of symmetry. (b) This plot is prepared just as (a) is, but here for two consecutive peptide units along the backbone, and only one

bonding class (modulo symmetry) is identified. These two minima are recognized as gþ and g� turns, respectively. (c) Plot of the volume in rotational

space (black points) with prohibitive steric overlap of rigid atomic spheres. The transparent volume in the plot represents the 95% of rotational space

where hydrogen bonding is allowed for steric reasons.
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correspond to cluster 2�
b and 2�

a , respectively (Fig. 5a). The
energy minima are now relatively weaker, which demonstrates
the compromise between covalent backbone bonding and
hydrogen bonds, where the high force constants of the covalent
bonds present between the two C–C–N units drastically reduce
the accessible configurations. This result together with the finding
of a widespread minimum of the hydrogen bond in general
(Fig. 6a) is strongly suggestive that the clusters empirically
observed in protein structures are in part caused by geometric
implications of the polypeptide backbone structure of the protein
together with the identity of the residues, that is, the protein
primary structure.

Discussion
Our rotational descriptor of main chain hydrogen bonds has been
demonstrated to be an effective coordinate on the possible local
geometries around hydrogen bonds and the geodesic distance in
rotation space a useful measure of the discrepancy between two
hydrogen bonds. The descriptor provides a uniform viewpoint on
local configurations of peptide units participating in an hydrogen
bond encompassing secondary structures and turns, and it
displays a remarkable clustering over all hydrogen bonds in the
PDB. Akin to Ramachandran plots, 3D plots in rotational space
usefully depict the relative positions of peptide units across
hydrogen bonds relevant for studying protein conformation,
dynamics and pathways. Our overall hydrogen bond patterns
could be used to annotate protein secondary and tertiary
structure, which may lead to a valuable and robust new
classification of protein folds11,20.

NMR is a widely used technique for determining structures of
proteins in solution21 where it is common practice to calculate an
ensemble of structures. The scatter within this ensemble derives
from both genuine dynamics of the protein in solution and from
lack of experimental constraints. Traditionally, this scatter is
viewed by superimposing the structures and measuring
coordinate differences22. However, this can be cumbersome and
even misleading if large unstructured regions are present that
mask more important structural features, for example, a
dynamical hinge connecting two rigid regions. Our
classification is a powerful tool for analyzing structural
ensembles derived by X-ray/NMR, as visualization of rotations
highlights important structural features while unstructured
regions are omitted, for example, our method pinpoints only
the dynamical part of a hinge.

X-ray crystallography can yield very accurate structures, which
are modelled to fit the observed electron-density maps. These
maps, that integrate all available diffraction data, may contain less
ordered local regions, and the quality of derived structures is
overall limited by the resolution of the diffraction data and the
accuracy of the determined phases. Among a number of
validation tools and procedures to ensure model quality is the
unbiased Ramachandran plot. Entirely analogously, our new
constraints on hydrogen bond rotations provide hydrogen bond
plot quality as a new tool to have a complementary role in model
validation and refinement, especially in cases where phi–psi angle
restraints defer any use of Ramachandran plot validation such as
low-resolution crystallography, electron microscopy and in silico
modelling.

The further geometrically possible beta strands, we find here,
comprised of clusters Lc, Le and Lf perhaps pose an interesting
opportunity in de novo protein-structure design.

As demonstrated23 for RNA, free energies coupled to the
topology of fatgraphs8 labelled by nucleic acids can be effectively
used to predict RNA secondary structure. Hydrogen bond free
energy5,24 relying on the distribution of hydrogen bond rotations
within each cluster could be readily implemented as Boltzmann

statistics based on HQ60 for example. Coupled to chord diagrams
with chords labelled by cluster and the backbone labelled by
amino acids, this could provide a new tool for ab initio protein
folding.

As rotations can be assigned to any ordered pair of peptide
units, relationships between them beyond hydrogen bonding,
such as spatial proximity, can be likewise studied. Suitable triples
of vectors can moreover be similarly assigned to any oriented
covalent bond and rotations used to study relationships between
them. Our basic method could therefore be much more broadly
applied to include protein side-chains or general ligands for
example.

A web-based implementation of our descriptor for uploaded
PDB files is anonymously available at http://bion-server.
au.dk/hbonds/.

Methods
Peptide plane rotation. Associate a triple F Pi ¼ ~ui;~vi; ~wið Þ of three-dimensional
vectors to the peptide unit Pi of a protein containing the consecutive backbone
atoms Ca

i �Ci ¼ Niþ 1 �Ca
iþ 1 in the usual crystallographic notation as follows:

~ui ¼
~zi �~yi
~zi �~yij j ; ~vi ¼

~yi �~xi � ~ui � ~yi �~xið Þð Þ~ui
~yi �~xi � ~ui � ~yi �~xið Þð Þ~uij j ; ~wi ¼~ui�~vi ð5Þ

In standard vector notation, where ~xi ,~yi ,~zi are the respective coordinates of Ca
i ,

Ci,Niþ 1. Such a triple F Pi ¼ ~ui;~vi; ~wið Þ is described by a 3-by-3 matrix RPi the
respective columns of which are the coordinates of~ui ,~vi , ~wi in the standard vector
basis. For any two peptide units Pi and Pj, with corresponding matrices RPi and
RPj , the rotationRPj ðRPi Þ

� 1 brings F Pi to F Pj . However, this rotation will change
if we rotate the entire protein. A descriptor, which is independent of overall
rotation is obtained on transforming both of F Pi and F Pj by R� 1

Pi
. Thus, F Pi

becomes the standard vector basis and F Pj becomes Ri;j ¼ R� 1
Pi RPj . We use

RH
i;j ¼ Ri;j as our descriptor for the rotation bringing Pi to Pj. For three peptide

units Pi, Pj, Pk, we have the relation Ri;k ¼ Ri;jRj;k .
In the special case when the two peptide units Pi� 1 and Pi are consecutive along

the backbone sharing the carbon Ca
i , the rotation matrix RB

i� 1 ¼ Ri� 1;i is a
function of the backbone conformational angle ji preceding and ci following Ca

i .
Assuming the idealized geometry of exact tetrahedral angles among bonds at each
alpha carbon atom and 120-degree angle between bonds within a peptide unit,
one finds8,

RB
i� 1 ¼ ~RBðjiÞ �RBðji þciÞ

� 1
2

ffiffi
3

p

2 0ffiffi
3

p

2
1
2 0

0 0 � 1

0
B@

1
CA; ð6Þ

where, with C1¼ cosj and S1¼ sinj,

~RBðjÞ ¼
2
3 �

C2
1
3 þ S21

6 � 2
ffiffi
2

p
C1
3 þ S21

4
ffiffi
3

p
h i

2 C1S1
2
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3
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h i

2 C1S1
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p
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2 S1ffiffi
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6

h i
2
3 þ
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3 � S21
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BBBB@

1
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ð7Þ

and, with C2 ¼ cos jþc
2 and S2 ¼ sin jþc

2 ,

~RBðjþcÞ ¼
1� 3

2 S
2
2

ffiffi
3

p

2 S22
ffiffiffi
3

p
C2S2ffiffi

3
p

2 S22 1� 1
2 S

2
2 �C2S2

�
ffiffiffi
3

p
C2S2 C2S2 1� 2S22

0
B@

1
CA: ð8Þ

When peptide unit Pi� 1 is in cis conformation, the matrix RB
i� 1 must be

premultiplied by a diagonal matrix with entries (1,� 1,� 1). Supplementary
Table 3 lists the conformational angles defining the secondary structures
considered in this paper from which the idealized backbone transition RB

i� 1 is
calculated.

Rotations and angle-axis pairs. Let~e1 ¼ 1; 0; 0ð Þ,~e2 ¼ 0; 1; 0ð Þ,~e3 ¼ 0; 0; 1ð Þ be
the usual vector basis of space. A rotation must necessarily map these vectors to
another respective triple ~u1;~u2;~u3 of pairwise perpendicular vectors of length one
with cross-product~u1�~u2 ¼~u3. We may write~ur ¼

P3
s¼1 asr~es, for each r¼ 1, 2, 3,

to determine the matrix R ¼ ðarsÞ; where the respective columns are the coordi-
nates of~u1;~u2;~u3. The trace of R is the sum tr R ¼ a11 þ a22 þ a33 of its diagonal
entries.

One can compute the matrix R ¼ Rðy; ~oÞ corresponding to a given angle-axis
pair y; ~o as follows. First, associate to ~o ¼ u; v;wð Þ the matrix O with rows
(0, �w, v)), (w, 0, � u) and (� v, u, 0), and finally define R ¼ IþO sin y
þO2ð1� cosyÞ, where I denotes the 3-by-3 identity matrix, and O2¼OO denotes
the matrix product. Conversely, the angle-axis pair y; ~o corresponding to the
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matrix R is given by y ¼ arccosðtrR� 1
2 Þ, 0ryrp with ~o, the vector of unit length

proportional to (a32� a23, a13� a31, a21� a12) for the case 0oyop. When y¼ 0,
the matrix A is the identity matrix and ~o is undetermined. When y¼ p, the axis ~o
is determined up to its sign only by the equations u2� 1¼ a11, v2� 1¼ a22,
w2� 1¼ a33, 2uv¼ a12, 2uw¼ a13 and 2vw¼ a23.

To describe distances between the modes of the clusters and known secondary
structures, it is useful to define the transpose to be the matrix Rt ¼ ðasrÞ derived
from R ¼ ðarsÞ by interchanging rows and columns. The geodesic distance on
rotational space between two rotations R;R0 is determined by the angle in the
angle-axis pair associated to the rotation RðR0Þt , that is, the distance between R
and R0 is

dðR;R0Þ ¼ arccos
trðR;R0Þt � 1

2

� �				
				: ð9Þ

Hence distances in rotational space are between 0 and p. A special property is
bi-invariance in the sense that dðR1RR2;R1R0R2Þ ¼ dðR;R0Þ for any four
rotations R;R0;R1;R2, that is, the distance is unchanged under matrix
multiplication on both the right and left sides. Furthermore, one can show that the
bi-invariant (un-normalized Haar) measure on the collection of rotations is given
by 2 1� cos rð Þ

r2 dxdydz, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
in the coordinates (x, y, z) of our

plots with total volume of rotational space equal to 8p2. Thus, densities of points in
our plots must be appropriately scaled, and distances between rotations must be
computed using dðR;R0Þ. In particular, this means that a true evenly distribution
on rotation space will in our presentation also result in an evenly distributed
density.

The clustering algorithm. To perform the clustering (see Supplementary Note 3
for choice of clustering algorithm) of the rotations, it is convenient to transform all
data points in rotational space by left multiplication with an element R� 1

0 in
rotational space to move most of the observed rotations away from the boundary
sphere. The convenient rotation R0 is given by 2.479, (� 0.282, 0.907, � 0.313)
in angle-axis notation, which is a point of density with angle coordinate fairly
close to p. Next, the cube (�p, p)3 is divided into 81� 81� 81 small ‘boxes’
with side lengths d¼ 2p/81, so box (n, m, p) has center (xn, ym, zp) with
xn¼ �pþ (n� 0.5)d and ym and zp defined similarly. Let nnmp denote the number
of transformed data points within the box (n, m, p) if it lies entirely within the
ball B of radius p. For a box B at the boundary of the sphere of radius p, we count
the number of points in B as well as the neighbouring antipodal box. The density in

a box is given by dnmp ¼
y2nmp

2 1� cos ynmpð Þð Þ nnmp , where ynmp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2m þ z2p

q
.

To form the clusters, the algorithm first finds seeds for the clusters after the
boxes have been ordered according to density. A box with a local maximum of the
density becomes a seed if the P-value for testing equal rates in boxes with distance 1
and boxes with distance 2, to the box under consideration, is below 0.003, and the
P-value for the similar test using boxes with distances 2 and 3 is below 0.01 (for the
robustness of these conditions please see Supplementary Fig. 7). To make the
procedure robust to the number of boxes used to divide (� p, p)3 and to enhance
the possibility of finding clusters in low-density regions, a similar run is made with
a 64� 64� 64 division. If two nearby seeds from the first run are joined only one is
kept as a final seed, and if a new seed is found, new meaning that it is sufficiently
apart from the seeds of the first round, this is included as a seed in the 81� 81� 81
division (see Supplementary Note 4 for a comparison of clusterings for varying box
sizes). The method used corresponds to testing for a known probability of success
in a binomial distribution. A large P-value indicates that there is not much
difference between boxes with distance 1 and boxes with distance 2 (or boxes with
distance 2 and boxes with distance 3), that is, the density is fairly flat, not pointing
to a well-defined cluster mode, hence the test. A small P-value on the other hand
points to a cluster with a well-defined mode point. Having established the seeds,
the densities dnmp for varying n, m, p are ordered according to decreasing size. The
algorithm adds one box at a time, where each added box becomes a member of a
cluster if the box distance from the point to the cluster is one or two; if there are
several competing clusters to join, we choose the one with the highest density for
the box closest to the new point. Having run through all nonempty boxes, a second
run is made to allow unclassified boxes from the first run to join nearby clusters
when the rotational space distance is o1.5 times the width of a box.

Except for the minor clusters 2�
c , 2þ

a , 3�
e , 3þ

c , 5�
b , 5�

e , 6þ
a , Le and Ld, both of

the P-values used to define a seed of a cluster are o10� 5 (Supplementary Fig. 7).

Hydrogen bond rotations in turns and helixes. The hydrogen bond rotation
between peptide units i and j can be calculated from the transformations RB

k ¼
ðRPk Þ

� 1RPkþ 1 along the backbone. Specifically (Fig. 2), if the donor peptide unit is
after the acceptor unit along the backbone, then i4j and the hydrogen bond
rotation is

RH
i;j ¼ ðRB

i� 1Þ
� 1ðRB

i� 2Þ
� 1 � � � ðRB

j Þ
� 1; ð10Þ

if the donor peptide unit is before the acceptor unit along the backbone, then ioj

and the hydrogen bond rotation is

RH
i;j ¼ RB

i :::RB
j� 1: ð11Þ

To correlate various clusters in rotational space with known structural motives, we
use the rotations given by the formulae (6), (7) and (8) for RB

k as functions of
conformational angles and the known conformational angles for various local
loops, turns and helix structures (Supplementary Table 3). For gamma turns, the
hydrogen bond rotations are

RH ¼ ðRB
gþ Þ� 1 andRH ¼ ðRB

g� Þ� 1 ð12Þ

respectively, where RB
gþ and RB

g� are the backbone transformations defined from
the set of conformational angles listed in Supplementary Table 3. For beta turns,
the hydrogen bonds rotations are

RH ¼ RB
T ð2Þ

� 1RB
T ð1Þ

� 1; ð13Þ
where T is the turn type, and the backbone rotations RB

T ð�Þ are derived from two
sets of conformational angles listed in Supplementary Table 3. For 310, a and p
helices, the hydrogen bond rotations are

RH ¼ ðRB
310
Þ� 2; ðRB

a Þ
� 3 and ðRB

pÞ
� 4 ð14Þ

respectively, where RB
310 , R

B
a and RB

p are the respective backbone rotations.
Supplementary Table 3 gives a complete list of the hydrogen bond rotations for all
the considered secondary structures and turns assuming idealized geometry and
exact cis or trans conformation.

Hydrogen bond rotations in long-range clusters. For the long-range clusters, we
consider their association with ideal parallel or antiparallel beta strands. For an
antiparallel beta strand, if there is an hydrogen bond between residue i and j with
rotation RH , the next hydrogen bond further away from the loop has a rotation
RH

1 given by either

RH
1 ¼ RB

a ðRHÞ� 1RB
a ; ð15Þ

or

RH
1 ¼ ðRB

a Þ
� 1ðRHÞ� 1ðRB

a Þ
� 1; ð16Þ

again under the assumption of ideal conformational angles along the backbone. For
an extended antiparallel beta strand, we require RH

1 ¼ RH . The corresponding
relations for an ideal parallel beta strand are

RH
1 ¼ RB

p RH
� �� 1 RB

p

� �� 1
and RH

1 ¼ RB
p

� �� 1
RH
� �� 1RB

p ð17Þ

where RB
p is the ideal transformation along the backbone given in Supplementary

Table 6. See Supplementary Fig. 8 for an explanation of these relations. For the

extended parallel case, we require RH
1 ¼ RH . If RH ¼ RB

p RH
� �� 1ðRB

p Þ
� 1, then

we also have RH ¼ ðRB
p Þ

� 1R� 1RB
p , and the only solutions are RH ¼ Id and a

half–full turn around the axis of RB
p , the latter not being relevant for a parallel beta

strand.
If the conformational angles between the two hydrogen bonds correspond to an

ideal antiparallel beta strand, then we can calculate the rotation RH
1 of the next

hydrogen bond from the rotationRH of the inner hydrogen bond by equation (15),
where RB

a is the ideal transformation along the backbone. Next, consider the
situation where the inner hydrogen bond of the loop belongs to one of the þ
clusters (2:4 hairpin). In this case, the next hydrogen bond belongs to the long-
range clusters. Still assuming that the conformational angles between the two
hydrogen bonds correspond to an ideal antiparallel beta strand, we get
equation (16) instead of equation (15). We have probed for the existence of pairs
RH and RH

1 subject to either (15) or (16) as follows. For each turn cluster, we find
candidate RH ’s as those hydrogen bonds with conformational angles outwards of
the turn close to the ideal antiparallel conformational angles (� 135�, 150�)
allowing for a deviation of 30�. From the selected cases, we calculate an average
hydrogen bond rotation RH , find RH

1 from the above equations (15) and (16), and
look for this rotation in the appropriate length category of hydrogen bonds.

Density function theory. DFT has been used to investigate the nature of the
hydrogen bonds between backbone peptide units. The calculations were done using
the ASE/GPAW package25 using projector augmented waves and a real space basis
(periodic boundary conditions in a 19.2� 19.2� 19.2 Å super cell and a
grid-spacing of 0.16Å). Exchange-correlation effects were described using the
Perdew-Burke-Ernzerhof (PBE) functional. This functional has been proven
successful in describing the hydrogen binding within, for example, helical
polypeptides (including the transitions from the alpha-helix to the pi- and 3–10
helices)18 and in describing the side-group propensities within beta-sheets19.

We probe the entire energy landscape of rotational space by modelling two
peptide units, minimalistically represented by methylacetamide, CH3–NH–CO–
CH3. The relative position of the donor and acceptor is calculated for each position
of rotational space followed by relaxation of all atomic degrees of freedom
(except for the C–C–N coordinates, whose relative position are fixed and only
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allowed to translate as a rigid unit, so as to not change the rotation from one unit to
the other).
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Erratum: Hydrogen bond rotations as a uniform
structural tool for analyzing protein architecture
Robert C. Penner, Ebbe S. Andersen, Jens L. Jensen, Adriana K. Kantcheva, Maike Bublitz, Poul Nissen,

Anton M.H. Rasmussen, Katrine L. Svane, Bjørk Hammer, Reza Rezazadegan, Niels Chr Nielsen, Jakob T. Nielsen

& Jørgen E. Andersen

Nature Communications 5:5803 doi: 10.1038/ncomms6803 (2015); Published 17 Dec 2014; Updated 3 Feb 2015

The authors Robert C. Penner and Ebbe S. Andersen were incorrectly omitted from the list of corresponding authors in this Article.
The correct information for correspondence is: ‘Correspondence and requests for materials should be addressed to R.C.P.
(email: rpenner@qgm.au.dk) or to E.S.A. (email: esa@inano.au.dk) or to J.E.A. (email: andersen@qgm.au.dk)’. The Article also contains
errors in the labelling of Figs 1 and 2. In Fig. 1a, the labels RPi, RPj, RPið Þ� 1 and RH

i;j should read RPi , RPj , RPið Þ� 1 and RH
i;j,

respectively. In Fig. 2, labels RB
i� 5, R

B
i� 4, R

B
i� 3, R
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i� 1, R

B
i , R

B
iþ 1, R
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iþ 5 and RB

iþ 6 should read RB
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i� 3,

RB
i� 2, RB

i� 1, RB
i , RB

iþ 1, RB
iþ 2, RB

iþ 3, RB
iþ 4, RB

iþ 5 and RB
iþ 6, respectively. The correct versions of these figures follow.
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