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Wave kinetics of random fibre lasers
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Traditional wave kinetics describes the slow evolution of systems with many degrees of
freedom to equilibrium via numerous weak non-linear interactions and fails for very important
class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with
non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave
systems, characterized by non-uniform double-scale dynamics with strong periodic changes
of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state.
Taking a practically important example—random fibre laser—we show that a model
describing such a system is close to integrable non-linear Schrédinger equation and needs a
new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the
laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental
results agree with our theory. The work has implications for describing kinetics of cyclical
systems beyond photonics.
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he mathematical description of non-linear systems with a

large number of degrees of freedom far from thermo-

dynamic equilibrium is still one of the major challenges of
the modern theoretical physics that is also of great importance for
various optical applications. The classical technique used in this
field is kinetic equation approach that stems from the seminal
work of Boltzmann!?. Kinetic theory for waves has been
pioneered by Peierls’, who derived the kinetic equation for
phonons in anharmonic crystals applying averaging over random
phases.

In many optical systems, key properties are defined by a large
ensemble of light waves, randomized through optical noise,
random scattering and non-linear interaction, which makes them
a natural object for wave kinetic description. Moreover, an optical
spectrum F(w) is the correlation function directly described by
the wave kinetic equation. Thus, the wave kinetic approach could
provide a straightforward description for the slow relaxation of
the optical spectrum to statistical equilibrium. In its classical
form, the wave kinetics®> has recently been successfully applied
to conservative non-linear optical systems®®,

However, a number of practically important optical systems
feature inherent gain and losses, often of a periodic nature. From
the theoretical point of view, dissipation and amplification, that
is, non-homogeneity over the evolution coordinate makes
classical wave kinetic description of such dissipative (active)
systems impossible.

The challenge becomes evident for a laser, one of the most
interesting and arduous optical systems from a theoretical point
of view. A vast number of various laser theories have been
formulated for different gain mechanisms and cavity types (see,
for example, refs 9,10 and the references therein). However, most
of them are dynamical and based on the representation of laser
radiation via cavity modes. For cavity-free systems, such as
random lasers'!~1°, dynamical models become complicated due
to the co-existence of localized and extended modes and strong
interactions between them!®-18,

A fibre laser typically features a very large number of
longitudinal modes weakly interacting via Kerr non-linearity.
Such laser is, in essence, a natural active cyclic system having a
double-scale kinetic evolution. Indeed, in fibre lasers due to gain
and loss non-homogeneity over the spatial coordinate along the
cavity, the fast evolution of the laser spectrum within each cavity
round trip (cycle) is subject to strong changes. At the same time,
the light evolves slowly from one round trip to another
approaching some statistical equilibrium state. Owing to a
complex nature of such kinetic processes, there is no yet a
general theory that quantitatively describes spectra of radiation of
fibre lasers, despite their wide practical use.

In this work, we introduce a new conceptual framework to
describe cyclic wave kinetics of fibre lasers modelled by
dissipative modifications of the integrable non-linear Schrédinger
equation. This allows us to formulate the first-ever non-linear
kinetic theory of laser radiation and describe, as an important
practical example, an optical spectrum of a random fibre laser!®.
Since the system is close to integrable, we find very non-trivial
kinetics, which makes for the conceptual novelty of our approach.

Results

Wave kinetic equation for fibre lasers. Kinetic theory describes
an average (macroscopic) probabilistic evolution of complex
system. Starting from basic microscopic dynamic equations
governing the interaction of elementary constituents (for
example, particles or waves), the kinetic description effectively
reduces a large number of degrees of freedom in the original non-
linear system by implying some assumptions about statistics of
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fluctuations. In the context of a wave system, the kinetic equation
describes an evolution of quantities that are averages over times
exceeding wave periods. In this case, waves with different
frequencies acquire different phases enabling treating them as
approximately independent at averaging. Nowadays, the wave
kinetic approach (known in some contexts as wave turbulence?)
is used in a range of physical applications varying from
Bose-Einstein condensate to astrophysics’.

In traditional wave kinetics, initial (arbitrary) wave spectrum
F,, evolves in a gradual way through cascades of numerous weak
non-linear interactions towards a statistical steady state, as
illustrated by Fig. 1a. The evolution from initial to asymptoticallz
stationary spectrum is governed by the wave kinetic equation™.
The long-time asymptotic state is steady both globally and locally
meaning that statistical properties do not change at any arbitrary
time shift. This is achieved when the external pumping of energy
into the system and dumping of energy out of the system are time
independent.

In fibre laser, radiation undergoes strong periodic (cyclic)
changes along the cavity due to combined action of gain, loss,
dispersion and non-linearity, superimposed on a slow evolution
from one round trip to another. The global statistical equilibrium
still may exist in terms of the Poincare mapping?° as a state that is
statistically reproduced after each round trip. However, contrary
to the case of systems homogenous over evolution variable, a local
statistically steady state does not exist, meaning that the wave
spectrum is changed substantially at any arbitrary time shift. As a
result, two scales over evolution coordinate do exist in laser
systems—a fast evolution within each round trip, and slow
evolution from cycle to cycle. This results in non-uniform spiral-
like evolution that differs from a monotonic relaxation in classical
wave kinetics, as schematically depicted in Fig. 1b. It is important
that the amplitudes of waves could be sufficiently increased or
decreased during the fast evolution within each round trip
depending on either the pumping or dumping being dominant at
particular moment in a laser cavity. So the classical wave kinetic
approach cannot be directly applied to the typical fibre lasers as
the strong local (quasi periodic) dynamics of the wave spectrum
must be taken into account.

To deal with active cyclic systems, we derive a pumping-driven
wave kinetic equation governing the fast and strong wave
spectrum evolution within round trip, in addition to the
‘standard’ wave kinetic equation governing the slow and
incremental wave spectrum evolution from cycle to cycle.

Further, we briefly outline the derivation of the kinetic
equation for the cyclic active wave system having numerous
random-phase waves non-linearly interacting via cubic non-
linearity, which is assumed to be weak. We consider the quadratic
dispersion law specific for optics and spectrally narrow
excitations. The system is under periodic energy pumping and
dumping repeated in a cyclic way and is evolving within each
period and from cycle to cycle Fig. 1b.

We start from the generic dynamical equation describing the
evolution of the complex envelope field Y over the evolution
coordinate z (that, for instance, can be a propagation distance
inside the fibre cavity) in dispersive non-linear medium?!:

i(0: = &) = POy + /20 . (1)

Here t stands for time, while z is the evolution coordinate
within the cycle. For the wave system, coefficients f and 7y
describe, respectively, the dispersion and non-linearity of the
running wave with intensity proportional to [/ (z, t)|*, the linear
operator ¢ describes energy pumping/dumping into/from the
system. In the particular case of optics, equation (1) is the
generalized non-linear Schrodinger equation, which describes
light propagation in one-dimensional media, y is associated with
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Figure 1 | Wave kinetics in active cyclic systems. (a) In classical wave kinetics, initial wave spectrum evolves gradually to a statistically stationary wave
spectrum when energy pumping/dumping is homogeneous over the evolution time. The evolution is governed by wave kinetic equation. The global
statistically stationary wave spectrum is also a local stationary solution, that is, does not changed when shifted in time on any arbitrary value. (b) In active
cyclic systems, the energy pumping/dumping act in a periodic way resulting in cycling dynamics and double-scale evolution of the wave spectrum. When
the energy pumping/dumping changes within the cycle, the wave spectrum is locally non-stationary exhibiting strong changes within each cycle. This
evolution is governed by a local pumping-driven wave kinetic equation equation (3). At the same time, the spectrum evolves in a gradual incremental way
from cycle to cycle similar to classical wave kinetics. If the overall pumping within the cycle is equal to energy dumping, the system approaches the global
stationary solution. (¢) In a random fibre laser, the optical pumping is distributed over the fibre, while the dumping occurs at fibre ends where the radiation
goes out. Each pass of the optical fibre is one cycle. The generation spectrum exhibits strong changes during evolution within each cycle because of optical
gain. Random distributed feedback couples the optical spectrum on consequent cycles. As the gain is equal to losses in a laser, the optical spectrum must
be identical on different cycles. Thus, the global stationary solution does exist.

Kerr non-linearity and ¢ is the operator describing an optical
spectrally dependent gain. The dynamical models based on the
non-linear Schrédinger equation (1) are widely used for
describing laser radiation in fibre lasers (see refs 22,23), as well
as other optical sgstems characterized by strong influence of noise
and stochasticity?4-2°,

The conservative part of equation (1), that is, one-dimensional
NLSE, is completely integrable and possesses an infinite number
of the integrals of motion?”. In the context of kinetic
consideration, this equation presents a very special case. As was
pointed out by Zakharov?’, there is a wide class of integrable
equations leading to trivial kinetics, that is, no kinetics at all, and
the one-dimensional NLSE belongs to the class. The deviations
from the integrability in equation (1) are given by the term with g
and are of crucial importance since; indeed, these deviations
determine a non-trivial kinetics of the wave system. We construct
a general scheme enabling the derivation of kinetic equation for
such nearly integrable systems (see Supplementary Note 1 and
Supplementary Fig. 1) that can be employed in a variety of other
physical applications.

The wave kinetic theory deals with a pair correlation function

F(z, Zit— tl) = (Y(z, t)l,b*(zl, t/)>7 (2)
here angle brackets denote averaging over z larger than the
dispersion length Ly = ‘ZZ’ where A is the characteristic width of
the wave spectrum deifned as a Fourier transform of the one-
point correlation function F(z, z, 1): F,(z)= [dt €' F(z, 1).
Further we are interested in kinetics, that is, in the evolution of a
wave spectrum. Note that in optics, F,(z) corresponds to the
directly measured optical spectrum.

Next we derive the wave kinetic equation on correlation
function F,, using the deviation of equation (1) from the
integrable NLSE. We use a standard assumption that the field
Y consists of numerous waves with random phases. These waves
interact via small non-linearity that is the origin of their

randomness. Extensive technical details of how the local wave
kinetic equation is derived using the diagram techniques can be
found in Supplementary Notes 2 and 3.

The resulting wave kinetic equation reads:

(0: — 2g(, 2))Fuy(2)
2 / da)ld(x)zda)3
=y —_—
(2m)
a(2) 8(2)
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Here g(w,z) is a frequency dependent gain, @ =
B(w? + @i — w3 —w3)is a dispersion factor, g,=g(w, 2)+
8wy, 2) +glws, 2) —glw, 2), g=g(w, 2)+glw,, 2)+ glws, z)
— 8wy, 2), ge=glw, 2)+g(w,, 2)+g(ws, 2)—glw, z). The
equation is derived under double separation of scales, that is, we
consider the case of strong dispersion over spectrum compared
with gain, and we assume that the gain itself if much larger than
gain variation over the spectrum width. Note that equation (3)
describes wave kinetics in a rather general class of active cyclic
system not limited to quadratic dispersion relation: different
dispersion laws can be easily incorporated in (3) by a
corresponding change of the factor .

There are several principal differences between the wave kinetic
equation (3) for the active cyclic system and a classical wave
kinetic equation. First of all, as the energy pumping and dumping
is non-homogenous over the evolution coordinate z within the
cycle, the wave spectrum exhibits strong changes during the
evolution within the cycle, so the local stationary statistically
steady state does not exist. Formally that means one cannot
equate the derivative over evolution coordinate z to zero and find
in this way a stationary solution similar to classical wave kinetics.

0w+ w, —wy; — ;)

(3)

le sz ng

| 6:6214 | DOI: 10.1038/ncomms?7214 | www.nature.com/naturecommunications 3

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

-
o
o

-

o
2

-4 -3-2-10123456
Wave frequency (arb. u.)

-6 -5

Wave intensity (arb. u.)

b
3.2§
= *]
g 284
o
[Z2]
52.47
° )
& 20
2 204
° o
>
]
S 16+ == - g — - - == - o -
0 20 40 60 80 100

Gain/dispersion ratio, |

Figure 2 | Statistically steady-state solutions of the local wave kinetic equation. The spectra are numerically calculated from the local wave kinetic

equation (3) in a particular case of a random fibre laser as an example Supplementary Equation 43. (a) Wave spectrum depending on gain/dispersion
ratio 4 =2g/PA2, where A is the optical spectrum width. (b) Wave spectrum slope 0 at different gain/dispersion parameter A The slope is defined from
the approximation of the wave spectrum wing by exponential function, exp( — 0x). Dotted line shows the wave spectrum slope in the case of hyperbolic

secant shape wave spectrum.

0.01

Spectral power density (W nm™") @

1E-3 / L L L
1,306 1,307 1,308 1,309 1,310 1,311

Wavelength (nm)

o

Optical spectrum width (nm)

2.0

08 12 16
Output power (W)

Figure 3 | Non-linear kinetic description of the random fibre laser optical spectrum. (a) Experimentally measured optical spectrum: near the

generation threshold (blue curve, laser power = 0.025 W), slightly above the
threshold (red curve, 1.5 W). The optical spectrum predicted by the local wave

generation threshold (green curve, 0.2 W) and well above the generation
kinetic equation Supplementary Equation 43, for laser power 1.5 W is shown

by dashed red line (b) Spectrum width as a function of the laser’s output power in theory and experiment. Experimental data are shown by black circles.

The prediction for spectrum broadening from non-linear kinetic theory based

on local wave kinetic equation (3) is shown by blue dashed line. The

prediction for spectrum narrowing from modified linear kinetic Schawlow-Townes theory Supplementary Equation 47, is shown by dashed green line.
Red line is a sum of non-linear and linear contributions. Inset—spectral narrowing near the threshold in a logarithmic scale.

The traditional wave kinetic equation for a conservative
Hamiltonian system could be obtained from the local wave
kinetic equation (3) in the limit of zero gain. In this case, the gain-
related Lorentzian terms g,/ (g2, . + ®*) in the right-hand side
of equation (3) turn into delta-functions, ensuring the energy
conservation and giving the classical kinetic wave equation.
However, the classical kinetic equation derived from NLSE is
trivial in a sense that the right-hand side vanishes because of
integrability of one-dimensional NLSE?’. In other words, in
NLSE-based integrable system, the spectrum does not evolve at
all. This is not the case for local wave kinetic equation (3). From
the formal point of view, wave interaction is uniform over slow
evolution time* in classical wave kinetics. In active cyclic systems,
however, these interactions are mediated by a non-homogenous
gain (see Lorentzian factors due to gain in equation (3)), which
results in the interaction being effective over the finite interval of
the evolution coordinate only. Note that equation (3) does not
conserve momentum, because the pumping and dumping are
changed over the evolution coordinate z. We would like to also
note that an interesting modification of the conventional wave
turbulence kinetic equation was studied in the paper by Ascheri
et al.?8, where the integrability of the original NLSE model was
broken by the transverse spatial inhomogeneity of the refraction
index.

Non-linear kinetic theory of a laser’s optical spectrum. Now
apply the formalism of wave kinetics in active cyclic systems to an
optical system and derive for the first time, to the best of our
knowledge, a non-linear kinetic theory of the optical spectrum of
a laser. In general, the classical wave kinetics cannot be applied to
describe the laser optical spectrum, because lasers are active cyclic
systems with double-scale evolution. The first steps towards
kinetic consideration have been made in the experimental
works?>30, in which the challenge was outlined. First, a heuristic
analysis was performed for a specific system, and strong
experimental evidence of the need for new rigorous non-linear
kinetic theory was presented there?*-0,

Here the local wave kinetic equation (3) allows us to formulate
a non-linear kinetic theory of the laser spectrum generalizing the
famous linear kinetic theory by Schawlow and Townes®!. We
focus on a particular, albeit very interesting case of the random
fibre laser operating via Rayleigh scattering feedback!®. Until
now, apart from a straightforward NLSE-based numerical
modelling®?, there was no theory, neither dynamical nor
kinetic, describing the optical spectrum of the random fibre
laser, which was an additional motivation to choose this
particular system as a test-bed of our general theory.

Consider a random fibre laser of length L that is an optically
pumped long span of a standard telecommunication fibre.
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Weak random distributed feedback is caused by the Rayleigh
scattering in a fibre core on refractive index inhomogeneities, and
the Raman gain is induced by the pump radiation, jointly
resulting in random lasing!®. The laser’s optical spectrum consists
of numerous waves of random amplitudes and phases which
interact via Kerr non-linearity. Effectively, the cavity of the
random fibre laser corresponds directly to the concept of the
active cyclic systems, Fig. lc. Indeed, there are two counter-
propagating generating waves that are identical under the
condition of symmetric optical pumping. The propagation of
each wave from one end of the optical fibre to another end is
governed by the dynamical equation (1). We treat each pass of the
optical fibre as one kinetic cycle. During the propagation, the
optical spectrum is subject to strong changes. Indeed, there is a
distributed optical gain all over the fibre, and the generation
intensity at the initial point of each cycle, at z=0, is very low
since almost all optical power is emitted from the fibre end.
Therefore, the local wave kinetic equation (3) must be applied.

We focus on a statistical equilibrium corresponding to an
average laser spectrum that is approached over many round trips.
Formally, the existence of the steady-state laser spectrum is
equivalent to the followmg bounda condition on correlation
function: F,,(0 ’R ‘ ), where <}R ’> is the
random reﬂectlon coefficient of the laser output coupler. Taking
the local kinetic equation (3) and the boundary conditions, using the
perturbation theory for a small non-linearity and after some
calculations, we derive the kinetic equation directly governing
steady-state laser spectrum F,, (Supplementary Note 4 and
Supplementary Equation 43), being just a modified version of the
local kinetic equation (3). Depending on the value of the dispersion,
the wave spectrum, that is, the generation spectrum of the random
fibre laser, has a different shape Fig. 2a, and different rate of energy
transfer from spectrum centre to spectrum wings Fig. 2b. Note that
in the case of long Raman fibre laser with a conventional linear
cavity, similar hyperbolic secant spectrum shape was observed and
introduced in a phenomenological way in the limiting case of the
dispersion being much larger than non-linearity

To verify the predictions of our non-linear kinetic theory on
the laser’s spectrum, we designed the random fibre laser operating
in the same domain of parameters as in the theory (see Methods
and Supplementary Note 5 and Supplementary Fig. 2). The laser
spectrum was measured and is shown in Fig. 3a. Below the
threshold, we observe an amplified spontaneous emission
spectrum that corresponds to the gain profile. High above the
generation threshold, the random fibre laser spectrum demon-
strates non-linear kinetic broadening. The spectrum shape is
perfectly described by our theory Fig. 3a. Moreover, the theory
describes the laser’s spectrum broadening law over the pump
power Fig. 3b (red line).

Besides the non-linear kinetic contribution to the wave
spectrum, well pronounced at high power, there is also a linear
kinetic contribution dominant at low powers. Indeed, it is well
known from the seminal work of Schawlow and Townes®! that the
laser spectrum exhibits spectral narrowing while the pump power
increases above the generation threshold. The spectral narrowing is
observed in random fibre laser spectrum as well (see Fig. 3b.
However, the approach of Schawlow and Townes®! can be used
only for laser cavities having distinct well-defined cavity modes,
which is not the case for the random fibre laser having modeless,
that is, continuous spectrum. To deal with that, we modify the
approach of Schawlow-Townes and derive the equation describing
spectrum narrowing of the random fibre laser at low power (see
Supplementary Fig. 3, Supplementary Note 6 and Supplementary
Equation 45). Its solution, Supplementary Equation 47, describes
well the experimentally observed optical spectrum narrowing near
the generation threshold Fig. 3b, inset.

Note that as a matter of fact, the Supplementary Equation 45 is
a linear kinetic equation valid at lower powers where one can
neglect the non-linear interactions between different spectral
components. In this sense, the local wave kinetic equation,
equation (3), describing the non-linear spectrum broadening high
above the generation threshold, is the extension of the Schawlow-
Townes equation to the non-linear mode interaction case. The
real optical spectrum has both—linear and non-linear—contribu-
tions. The sum of linear and non-linear terms describes well the
experimentally measured laser spectrum width in all power range
Fig. 3b. The small residual difference between the theory and
the experimental data could be attributed to the influence of the
pump wave induced cross-phase modulation (XPM) effect. The
estimate gives the value of XPM induced spectral width of 0.2 nm
at low power.

Discussion

The general formalism of wave kinetics of active cyclic systems
presented here could be applied for various optical systems where
stochasticity is important, such as random lasers of other types,
lasers with open or unstable resonators, multi-mode lasers with
very large number of generation modes and other systems.
However, our theoretical formalism for statistics of cyclic active
systems can have implications far beyond photonics. To give the
example most close to heart: within every heartbeat from diastole
to systole, there are substantial and complicated changes of the
blood flow—when one starts to run, it takes many heartbeats for a
system to evolve into a new state. The world is full of such
systems, non-Hamiltonian in their nature, which evolve to the
statistical equilibrium in cycles as external energy pumping and
dumping occurs in a periodic way; for instance, day and
year cycles in meteorology, long-haul fibre transmission links,
lasers, Rayleigh-Taylor instabilities in various media (water,
atmosphere, coatings in surfaces). Our work shows a direction for
describing such systems—considering slow evolution of the
respective correlation function averaged over several cycles.

Methods

Experimental set-up. In brief, the random fibre laser comprises a pump source at
1,115 nm coupled to 850 m of a phosphosilicate fibre. The laser generates near
1,308 nm. We minimize the length of the random fibre laser to keep the pump
nearly undepleted and maintain a low non-linearity factor, which is actually the
ratio of the generation power to the pump power. The shorter the length, the
higher the generation threshold, and, therefore, the higher pump power at given
generation power. To compare the non-linear kinetic laser theory predictions with
experimental data, we measure all fibre parameters except non-linearity coefficient
that is known from the literature. The coefficients are linear losses o =0.09 km™,
dispersion coefficient f=4.3 ps?km™!, y =7 (km W)~1, Raman gain coefficient
gr=10.68 (kmW)™L.
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