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Evidence for an anomalous current–phase relation
in topological insulator Josephson junctions
C. Kurter1,*, A.D.K. Finck1,*, Y.S. Hor2 & D.J. Van Harlingen1

Josephson junctions with topological insulator weak links can host low-energy Andreev-

bound states giving rise to a current–phase relation that deviates from sinusoidal behaviour.

Of particular interest are zero-energy Majorana-bound states that form at a phase difference

of p. Here we report on interferometry studies of Josephson junctions and superconducting

quantum interference devices (SQUIDs) incorporating topological insulator weak links. We

find that the nodes in single-junction diffraction patterns and SQUID oscillations are lifted and

independent of chemical potential. At high temperatures, the SQUID oscillations revert to

conventional behaviour, ruling out asymmetry. The node-lifting of the SQUID oscillations is

consistent with low-energy Andreev-bound states exhibiting a nonsinusoidal current–phase

relation, co-existing with states possessing a conventional sinusoidal current–phase relation.

However, the finite nodal currents in the single-junction diffraction pattern suggest an

anomalous contribution to the supercurrent possibly carried by Majorana-bound states,

although we also consider the possibility of inhomogeneity.
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T
opological insulators (TIs) are band insulators that possess
gapless, helical surface states that mimic relativistic Dirac
electrons1. The helical nature of these surface states implies

that with induced superconductivity one can create an analogue
of a p-wave superconductor with Majorana-bound states (MBSs)
at vortex cores2–4. By coupling a TI with two superconducting
leads, one can generate a Josephson junction with anomalous
current–phase relation (CPR) because of the presence of low-
energy Andreev-bound states (ABSs)2,5,6. Among these states,
there is a special pair with 4p periodicity that crosses zero energy
when a phase difference of p is introduced across the junction.
Such states are identified as the MBSs that obey non-Abelian
exchange statistics and can be used to implement a robust
topological quantum computer7.

Recently, there has been much experimental progress in
realizing and studying the Josephson effect in TIs8–17. Although
most such devices appear to have a significant bulk contribution
to the normal state conductance, there is evidence10,13,16,17 that
the majority of the supercurrent is carried by surface states.

Josephson interferometry is a great route to study CPR of
Josephson junctions. Magnetic flux threading the barrier induces
phase-winding along the width of the junction, leading to
interference effects that modulate the critical current. In a
Josephson junction in the small junction limit with a uniform
current density and a sinusoidal CPR, this results in a Fraunhofer
diffraction pattern, characterized by vanishing of the critical
current from destructive interference whenever an integer
number of flux quanta are enclosed by the junction. These nodes
remain zero even for nonsinusoidal CPRs that are 2p-periodic. In
contrast, it has been proposed18 that Josephson vortices could
stabilize pairs of MBSs in TI junctions, leading to a residual
critical current at integer flux quanta. While anomalous
diffraction patterns from TI junctions have been reported11,
interpretation of such node-lifting must be carried out carefully
because of the possibility of trivial effects, such as inhomogeneity,
disorder and screening effects of large supercurrents.
Alternatively, one may analyse quantum interference between
two junctions interrupting a superconducting loop to form a
superconducting quantum interference device (SQUID). In this
case, flux threaded within the loop imposes a phase difference
between the two junctions, generating interference that is less
sensitive to junction details.

Here we combine both approaches (single junction diffraction
pattern and SQUID oscillations) to probe the CPR of TI
junctions. These approaches can be made more sensitive to
unconventional supercurrent components than a direct measure-
ment of the CPR19 by focusing on the nodal regimes where the
sinusoidal components are canceled out by destructive
interference. We find evidence of an anomalous CPR in both
the diffraction pattern and SQUID oscillations. While a
nonsinusoidal, 2p-periodic CPR can explain the node-lifting in
the SQUID oscillations, this is not the case for the diffraction
pattern. Instead, we consider the possibility of MBSs, while
attempting to rule out the influence of inhomogeneity in the
supercurrent distribution. Our results provide evidence for low-
energy ABSs in TI Josephson junctions. While such states might
include MBSs, further work is likely required to firmly exclude
other effects.

Results
Characterization of TI Josephson junctions. We analyse both
single lateral Josephson junctions and dc SQUIDs incorporating
them on the top surface of a thin piece of the three-dimensional
(3D) TI, Bi2Se3. We focus on one particular tri-junction SQUID
(illustrated in Fig. 1a, with sample current-voltage I–V curves

shown in Fig. 1b), with similar results having been observed in
many other devices. The SQUID is formed from three super-
conducting leads on the surface of the TI, separated by 100-nm
gaps.

We observe a sharp drop in the critical current with top gating
(Fig. 1c). This signals the depletion of the conventional two-
dimensional electron gas (2DEG) originating from band-bending
at the surface of Bi2Se3, which exposes the helical surface states
that carry the majority of the supercurrent to greater disorder15.
As carriers are depleted by the top gate we find a qualitative
change in the temperature dependence (shown in Fig. 1d), in
which the junction acquires a more diffusive character10,17. We
have observed consistent behaviour in nearly all of our TI
junctions, independent of TI film thickness (from 7 to 86 nm),
suggesting that the supercurrent is dominated by surface effects.
However, we emphasize that our interpretations of
interferometric measurements in this paper can be made
independent of exact knowledge of the role played by trivial
states in the bulk or the surface. This assertion is justified because
the helical states can co-exist with such trivial states20. Theoretical
studies of doped topological superconductors21–24 also suggest
that the bulk can be gapped by superconductivity, permitting the
observation of surface physics.

Diffraction pattern and SQUID oscillations. In Fig. 2a, we show
the magnetic field dependence of the critical current for two
different top gate biases. We observe rapid SQUID oscillations
with a period of E0.21mT, consistent with the lithographic area
of SQUID loop and an estimate of flux focusing by the super-
conducting film. The SQUID oscillations are enclosed in an
envelope, reflecting the diffraction pattern of the individual
junctions. Minima in this envelope correspond to integer flux
quanta enclosed by the individual junctions. We observe that the
critical current does not completely vanish at these field values;
instead, the current drops to a finite value that is essentially
independent of gate bias. Similar node-lifting is observed in single
Josephson junctions and other SQUIDs fabricated on a TI (for
example, see Supplementary Figs 1 and 2). We also observe lifting
of the nodes in the SQUID oscillations within the envelope,
shown in greater detail in Fig. 2b. While the maximum (anti-
nodal) supercurrent varies dramatically with gate bias, the nodal
current remains fixed at a value of roughly 150 nA near zero field.
The nodal current at a fixed gate bias slowly decreases with
magnetic field, much like the antinodal currents.

Nodal supercurrent. We now consider possible mechanisms for
the observed node-lifting in the interference characteristics of our
junctions and SQUIDs. We focus first on the SQUID nodes
because there are a number of well-known phenomena that can
lift the nodes of SQUID oscillations, particularly finite inductance
of the SQUID loop, parallel conductance mechanisms (that is,
shorts in one of the junctions), asymmetry in junctions and
a nonsinusoidal CPR. As the SQUID inductance parameter
b¼ LIc/F0E10� 3 is much less than 1 (L is the loop inductance,
Ic is the critical current, F0¼ h/2e is the magnetic flux quantum,
h is the Planck constant and e is the elementary charge), circu-
lating currents are unlikely to be the cause of the observed node-
lifting25. A superconducting short is ruled out because the node
current at a given gate bias decays with field much like the
antinodes, indicating that it is a Josephson effect spread across the
junction width.

If the two junctions do not have equivalent critical currents,
then perfect destructive interference will not occur at the nodes.
To test for asymmetry, we measure the nodal supercurrent at
elevated temperatures and at a gate bias of VTG¼ � 18V, as
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illustrated in Fig. 3a,b. While the critical current at the first
SQUID antinode (at a magnetic field of B¼ 0.146mT, see Fig. 2b)
only declines gradually with temperature, we find that the nodal
current at B¼ 0.04mT collapses more rapidly and vanishes
beyond 850mK as shown in Fig. 3b. Part of this reduction is likely
due to the suppression of the critical current by thermal
fluctuations that affect the smaller nodal current more signifi-
cantly. The suppression is governed by the noise parameter
G¼ 2ekBT/Ic, the ratio of the thermal energy to the Josephson
coupling energy, here kB is the Boltzmann constant . For T¼ 800
mK and Ic¼ 150 nA, this gives G¼ 0.22, which should reduce the

apparent critical current for an underdamped Josephson junction
by a factor ofE2 (ref. 26); however, we observe at least a factor of
8 reduction in the nodal current on heating. Indeed, when the
SQUID antinodal critical current is suppressed to 150 nA at
higher magnetic fields due to phase-winding along the junction
width (for example, at B¼ 2.44mT, visible in Fig. 4d), the
detected critical current falls by 50% between 20 and 800mK, as
expected. Thus, the rapid vanishing of SQUID nodal current at
high temperature is inconsistent with junction asymmetry.
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Figure 2 | Phase-sensitive properties of supercurrent. (a) Ic versus B

traces for VTG¼0 (black) and VTG¼ � 18V (red) at 20mK, showing both

high-frequency SQUID oscillations bound by an envelope corresponding to

the single-junction diffraction patterns. Blue arrows point to nodes in

diffraction pattern. (b) Additional data sets with high magnetic field

resolution to show SQUID oscillations at 20mK near zero field for various

gate values. Note the gate independence of nodes in both a,b, although the

SQUID nodes slowly decrease with magnetic field.
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Figure 3 | Suppression of SQUID nodal current at elevated temperature.

(a) Current–voltage curves at the SQUID node closest to zero applied field

(B¼0.04mT) and VTG¼ � 18V. (b) Temperature dependence of SQUID

nodal (B¼0.04mT, black squares) and SQUID antinodal (B¼0.146mT,

red squares) critical currents; both sets are normalized by their values at

20mK and were taken at VTG¼ � 18V. In both cases, current–voltage

curves were taken as close to zero applied field as possible, where there is a

minimal amount of magnetic flux threading the individual junctions. For

rounded current–voltage curves, we use the ‘excess current’ method to

determine critical current.
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Figure 1 | Characterization of SQUID. (a) Scanning electron microscopy (SEM) image of device. The Bi2Se3 flake is outlined with a dashed white line. Top gate is

coloured yellow and the niobium leads are coloured blue. Each junction has a length ofB100nm and a width of 1mm. Scale bar, 2mm. Schematic of device (TI flake

and top gate not shown) is shown in inset. Our measurements are sensitive to the sum of the critical currents of two of the junctions, with a phase difference

f2–f3¼ 2p(F)/(F0) set by the magnetic flux F within the superconducting loop. Here F0 is the magnetic flux quantum. The third junction is not directly probed

here. It only partially covers the TI flake and thus only weakly modifies the much larger supercurrent circulating around the loop. (b) I–V curves versus temperature

at zero magnetic field and top gate bias (B¼0 and VTG¼0V), clearly demonstrating zero resistance state. (c) Top gate dependence, showing an abrupt drop in

supercurrent. (d) Temperature dependence of critical current for VTG¼0 (black squares) and VTG¼ � 18V (red squares), showing a transformation from ballistic

to diffusive behaviour. Note that the supercurrent at low density (VTG¼ � 18V) is only weakly dependent on temperature up to 800mK.
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Low-energy ABSs. Since we have ruled out the asymmetry, an
alternative explanation for the lifted SQUID nodes at lower
temperature is necessary. Indeed, our data suggest that the nodes
are lifted at low temperature because of nonsinusoidal contribu-
tions to the CPR, which then become conventional or suppressed
at higher temperatures. The nonsinusoidal behaviour is expected
in junctions in which some of the supercurrent is carried by low-
energy ABSs with high transparency5,27. Such unconventional
CPRs are not symmetric about a phase difference of f¼ p/2 or
f¼ 3p/2 and do not obey I(fþ p)¼ � I(f); thus, when two
junctions with nonsinusoidal CPRs have a p phase difference
imposed between them, as in a SQUID with flux F¼F0/2, the
total supercurrent does not perfectly cancel out even if the two
junctions are nominally identical. In Fig. 4a, we superimpose a
simulated current–flux relation on the basis of the formalism in
ref. 2 with the observed SQUID oscillations at 20mK, using a
CPR shown in Fig. 4b. Here the individual ABSs can be labelled
by their transverse momentum q along the width of the junction.
States with large |q| contribute an essentially sinusoidal
component to the CPR, while states with small |q| produce a
highly forward-skewed component. The two q¼ 0 states are
identified as the MBSs. The nodes are lifted because of the highly
forward-skewed CPR components from low q (representing low-
energy ABSs), illustrated by the red curve in Fig. 4b. The blue
curve in Fig. 4b represents a sinusoidal term that is added to the
unconventional CPR to construct the total CPR (black trace). We
emphasize that this is a toy model to illustrate how an

unconventional CPR can lead to the observed SQUID
oscillations. We have ignored details such as scattering, finite
junction length and temperature5. A more detailed description of
our model is given in the Supplementary Note 1.

In Fig. 4c, we show the SQUID oscillations near zero field for
three different temperatures. While the SQUID nodes are
prominently lifted at low temperature, beyond 800mK the nodes
are fully formed and the SQUID oscillations better described by
two essentially identical junctions with sinusoidal CPR, suggest-
ing that the anomalous components revert to a conventional
sinusoidal form. At higher temperature the CPR becomes
conventional, consistent with direct measurements of CPR in
superconductor-normal-superconductor (SNS) devices28 and
expected in the case of TI Josephson junctions5. Our direct
measurements of the CPR in TI junctions also show evidence of
slightly forward skewness that disappears with temperature (see
Supplementary Fig. 3 and Supplementary Methods). The
independence of the SQUID nodal supercurrent with gating
(shown in Fig. 2b) suggests that the top gate primarily suppresses
conventional states.

One might claim that the additional current at the nodes comes
from some separate component with a sinusoidal CPR, such as
current through the bulk or the bottom layer. This hypothetical
component could conceivably be asymmetric between the two
junctions, not affected by the top gate and much more susceptible
to increased temperature (due to lower mobility or phase
coherence). However, such a component should also contribute
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Figure 4 | SQUID oscillation model and high-temperature behaviour. (a) Observed (red squares) SQUID oscillations for VTG¼ � 18V and 20mK,

compared with theoretical (black) curve based on a toy model CPR. (b) Theoretical CPR used to derive the theoretical SQUID oscillations in a. We add the

q¼0 and q¼0.1 modes (in normalized units in which the velocity u and energy gap D0 are set equal to 1) to a purely sinusoidal CPR (shown in blue). The
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behaviour leads to detectable levels of node-lifting in SQUID oscillations while possibly being obscured in direct measurement of CPR. The theoretical

SQUID oscillations were rescaled by sin(pB/B0)/(pB/B0) to mimic Fraunhofer-like decay of critical current due to single-junction diffraction. (c) Critical

current versus magnetic field for 20mK (black), 400mK (red), and 800mK (blue) at VTG¼ � 18V, showing a discernible change in SQUID modulation

depth. For each temperature, the critical current is normalized by the value at B¼0.146mT. As the temperature increases, the current at the SQUID nodes

decreases, indicating that the CPR is reverting to a conventional form (that is, sinusoidal). (d) Comparison of Ic versus B traces at VTG¼ � 18V for 20mK

(black) and 800mK (red). Inset shows the same data as the 800mK in detail to show the diffraction pattern nodes (blue arrows).
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a sizable amount to the antinode current. However, at VTG¼
� 18V, the antinode current is largely temperature-independent
from base temperature up to 800mK.

Discussion
Having established that nonsinusoidal terms in the CPR arising
from low-energy ABSs can lift the SQUID nodes, we return to the
diffraction pattern envelope to consider the origin of the lifting at
the nodes of the single junction diffraction pattern. It is important
to note that skewed CPR components from qa0 modes can lift
the nodes of the SQUID oscillations; however, these would still
undergo completely destructive interference at the nodes of the
diffraction pattern envelope as long as the CPR is 2p-periodic. It
is well known that distortions from an ideal Fraunhofer
diffraction pattern can arise from inhomogeneous critical current
distribution and can lead to lifted nodes in the diffraction pattern
due to an incomplete cancellation of supercurrent. This effect is
difficult to rule out. However, we do not believe that critical
current inhomogeneity can fully explain the lifting of the nodes in
the SQUID oscillations and single junction diffraction pattern for
several reasons. First, the small amount of asymmetry between
the two junctions in the SQUID strongly suggests that such
inhomogeneity is low (see Supplementary Fig. 4 and
Supplementary Note 2 for a comparison between a simple model
of inhomogeneity and the observed lifting of the first node in the
diffraction pattern envelope). In addition, the diffraction patterns
we observe in nearly all of our junctions exhibit a strongly lifted
first node and a nearly vanishing second node. This can be seen in
the 800-mK trace in Fig. 4d (where the second node in the
diffraction pattern envelope is lower than both the first and third
nodes) and in single junction diffraction patterns (see
Supplementary Fig. 1 and ref. 15). This shape is difficult to
achieve solely by critical current asymmetry and its consistency
across many junctions makes us consider alternative explanations
for the single junction node lifting.

It has been proposed that lifted notes in the diffraction pattern
can arise from the hybridization of pairs of MBSs that exist on the
top and bottom surfaces of the TI barrier18. These are bound to
Josephson vortices at the locations where the phase difference is
an odd multiple of p. When there is an integer multiple of flux
quanta in the junction, at which a node is expected, these states
move to the edge of the junction and the MBSs hybridize, creating
a burst of supercurrent and lifting the nodes by effectively
generating a strong asymmetry in junction critical current
distribution. The magnitude of the observed nodal supercurrent
agrees with the predicted value of IED0/F0E100 nA, where D0 is
the niobium superconducting gap and F0¼ h/2e is the magnetic
flux quantum. Our use of the model in ref. 18 is justifiable
because the thickness of our TI films (6–30 nm) is smaller than
the spatial size of the MBSs (as large as tens of nanometres),
allowing us to ignore additional ABSs at the edge of the junction.
The independence of the diffraction pattern nodal current with
respect to top gate bias is also consistent with the robustness of
MBSs to changes in chemical potential.

We admit that some features of our data are not readily
described by this model invoking MBSs. For example, this
mechanism involves low-energy ABSs that would also contribute
to the lifting of the SQUID nodes. However, we find in Fig. 4d
that the diffraction pattern envelope nodes do not collapse at
800mK, where the SQUID nodes vanish. More significantly, this
model predicts that all junction nodes are lifted equally, which
conflicts with our observation that the odd nodes tend to be lifted
preferentially to the even ones. We speculate that hybridization of
MBSs in adjacent vortices might alter the details of the node-
lifting and distinguish between an even and odd number of MBS

pairs. One can understand this by noting that, while an even
number of MBS pairs can fully hybridize each other and remove
any zero-energy states, for an odd number there will always be at
least a single pair remaining. Nonetheless, these discrepancies as
well as the possibility of inhomogeneity force us to be cautious
about identifying the anomalous diffraction patterns as firm
evidence for MBSs.

Methods
Sample preparation. Single crystals of Bi2Se3 were grown by melting a mixture of
pure Bi and Se in a stoichiometric ratio of 1.9975:3 (Bi:Se) in a vacuum quartz tube
at 800 �C. Thin flakes (6–30 nm) of Bi2Se3 were exfoliated on silicon substrates
covered by a 300-nm-thick SiO2 layer. The sample in the main text is 9-nm thick.
Such thin flakes typically have a two-dimensional (2D) carrier density of
N2DB1013–1014 cm� 2 and low-temperature mobility mB102–103 cm2/V-s, as
determined by Hall bar measurements on separate flakes of similar dimensions.
Weak antilocalization measurements of such Hall bars give typical phase-coher-
ence lengths of cf¼ 300–1,000 nm at 10mK. Superconducting leads were defined
by conventional e-beam lithography and a subsequent DC sputtering of 50 nm of
Nb at room temperature. Brief Ar ion milling is employed before metallization
in situ to ensure good contact between the Bi2Se3 and the leads. A top gate may be
created by covering the sample with 30 nm of alumina via ALD and deposition of
Ti/Au over the exposed Bi2Se3.

Low-temperature measurement. The devices were thermally anchored to the
mixing chamber of a cryogen-free dilution refrigerator equipped with a vector
magnet and filtered wiring. We perform current-biased transport measurements
with standard lockin techniques, typically with a 4-nA AC excitation at f¼ 73Hz.
The doped silicon substrate can act as an electrostatic back gate; however, we found
that the critical current was only very weakly tuned by back gate bias. The device
featured in the main part of this paper was 9-nm-thick and possessed a normal
state resistance of 37 ohms, which was only weakly dependent on top or back gate
bias. All data in the main section of this paper were taken at 20mK, unless stated
otherwise. We plot and report all data in terms of applied magnetic field. A small
amount of magnetic field (Bo0.2mT) is present even at zero applied field, likely
due to magnetic flux trapped within the superconducting magnet. To achieve zero
effective field, we tune the applied field until the supercurrent is maximized (that is,
there is no destructive interference from residual fields).
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