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Robust quantum metrological schemes based on
protection of quantum Fisher information
Xiao-Ming Lu1,2, Sixia Yu1,3 & C.H. Oh1,4

Fragile quantum features such as entanglement are employed to improve the precision of

parameter estimation and as a consequence the quantum gain becomes vulnerable to noise.

As an established tool to subdue noise, quantum error correction is unfortunately

overprotective because the quantum enhancement can still be achieved even if the states are

irrecoverably affected, provided that the quantum Fisher information, which sets the ultimate

limit to the precision of metrological schemes, is preserved and attained. Here we develop a

theory of robust metrological schemes that preserve the quantum Fisher information instead

of the quantum states themselves against noise. After deriving a minimal set of testable

conditions on this kind of robustness, we construct a family of 2tþ 1 qubits metrological

schemes being immune to t-qubit errors after the signal sensing. In comparison, at least

five qubits are required for correcting arbitrary 1-qubit errors in standard quantum error

correction.
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I
n quantum metrology, delicate and fragile quantum features
are being used to enhance the sensitivity of experimental
apparatus, for example, non-classical probe states were used

for the high sensitivity of optical interferometer and atomic
spectroscopy1–8. However, the quantum enhancement for the
sensitivity may be subdued by the presence of ubiquitous and
inevitable noise9–26. Therefore, it is of utmost significance to
investigate the robustness of the optimal strategies for the high
sensitivity against noise. Most recently, quantum error correction
(QEC) was employed in quantum metrology27–30 to overcome
noise problem, whereby protecting the quantum states, on which
a signal parameter is imprinted, the measurement precision for
that parameter is protected.

This is no wonder because the standard QEC was originally
designed for protecting all the information encoded in quantum
states, that is, the logical states in the universal quantum
computation, against the noise31–37. In quantum metrology,
however, what matters essentially is the distinguishability about
the signal parameter that is sensed by quantum systems and
encoded in quantum states. According to the quantum estimation
theory38–42, this distinguishability is measured by quantum
Fisher information (QFI). Therefore, preserving the QFI of a
given family of states against noise is sufficient for quantum
metrological schemes to work under noisy environment. Since the
QFI represents only partial information encoded in quantum
states, the use of the QEC for quantum states is obviously
overprotective, which leads to unnecessary waste of resources.
Our main goal is to establish a variant theory of QEC designed for
quantum metrology, namely, robust quantum metrological
schemes, by taking the QFI instead of the fidelity of quantum
states as the figure of merit.

In this paper, we show that analogous to QEC for quantum
states the errors can also be digitalized so that we can construct a
robust metrological scheme, in which the QFI is preserved under
an entire class of unknown noisy processes rather than a specific
one. Furthermore, we derive the necessary and sufficient testable
conditions on preserving QFI, and construct the optimal
measurements extracting the maximal distinguishability about
the signal parameter in the presence of noise. Our testable
conditions describe the minimal requirements for the robustness
of a parameter estimation scheme against noise, and can be used
to identify the errors to which the QFI is immune. As an example,
we construct a family of metrological scheme on 2tþ 1 physical

qubits to protect the QFI against arbitrary errors on no more than
t physical qubits after the signal sensing.

Results
Quantum parameter estimation theory. A standard quantum
metrological scheme to detect and estimate a signal parameter y
can be depicted by the following sensing transformation:

r7!ry ¼ e� iyHreiyH ð1Þ
with H being a known Hermitian operator and r the probe state.
The value of the parameter is estimated through the classical data
processing on the measurement outcomes obtained by repeating
experiments in ry. From estimation theory38–40, the regularized
root mean squared error of the estimator ŷ is limited by the
Cramér–Rao bound

dŷ :¼ ŷ

jdhŷi=dyj
� y

 !2* +1=2

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nFðry jMÞ

p ; ð2Þ

where n is the number of repetitions of the experiments, and

Fðry j MÞ :¼
X
x

py xð Þ d
dy

ln py xð Þ
� �2

ð3Þ

is the (classical) Fisher information extracted by the measurement
{Mx} with py(x):¼Tr(Mxry) being the probabilities of obtaining
outcomes x. HereMx are positive operators satisfying

P
x Mx ¼ 1

with 1 being the identity operator. The maximal Fisher
information over all possible measurements is given by the so-
called QFI FðryÞ :¼ TrðryL2yÞ; where the symmetric logarithmic
derivative (SLD) operator Ly is defined as the Hermitian operator
satisfying dry=dy ¼ 1

2 fLy; ryg with { � , � } being the anti-
commutator38–42. More importantly, the Cramér–Rao bound is
asymptotically achieved38,39, therefore, QFI can be considered as
a measure on the distinguishability about the parameter in
quantum states.

An optimal strategy of the quantum parameter estimation
comprises the probe state maximizing the QFI and the
measurement attaining the maximal Fisher information. Taking
appropriate entangled states as the probe states, a quantum
metrological scheme may achieve the Heisenberg scaling of
precision 1/N, where N is the number of resources employed in
the experiment, for example, the number of probes6–8. This is a
considerable improvement over the standard quantum limit
1=

ffiffiffiffi
N

p
. Nevertheless, those entanglement-enhanced strategies that

are optimal for the noiseless systems easily lose the quantum gain
for the noisy systems9,11,12,14–26.

Parameter estimation in noisy cases. We now turn to the
question of the optimal strategy in noisy cases. We assume that
the noise can be deferred until after the sensing transformation,
that is, states to be measured are NðryÞ ¼

P
j EjryEjw where N

denotes a noisy channel with Kraus operators {Ej}. We emphasize
that this noise model is applicable to the noise that commutes
with the generator of the sensing transformation, occurs during
the transmission or storage in the interval between the sensing
and the measurement, or is induced by the measurement
imperfection. This noise model can also be considered as an
approximation when the sensing time is short27,28. A general
entanglement-enhanced metrology scenario of this type is
depicted in Fig. 1a. At first glance, the optimal strategy for such
noisy cases might be established by seeking the optimal probe
states maximizing the QFI of NðryÞ and the corresponding
optimal measurements. Technically, this straightforward
optimization needs to diagonalize the parametric family of
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Figure 1 | Abstract models for quantum parameter estimation. (a) Set-up

for entanglement-enhanced metrology with noise being assumed after the

sensing transformation U� n
y , where n is the number of the qubits.

(b) Heisenberg-limited metrological scheme with the QEC protection. The

entangling operation (labelled with ‘Entanglement’ in the figure) acts only

on the first qubit (thick line) in each block, and produce the GHZ state. The

encoders (labelled with ‘Enc’) encode the first qubit in each block into a

phase-flip code. The sensing transformation Uy is a logical phase-shift

operation on each phase-flip code space. Here we note that the

‘Entanglement’ operation plays a dual role: on one hand, it supplies the

Heisenberg scaling of the QFI, and on the other hand, it supplies a higher

level of bit-flip code in addition to the phase-flip code.
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states NðryÞ, which is often formidable and even impossible
without the details of the noise. Therefore, the optimal strategies
obtained in this way are very restricted.

On the basis of the above considerations, protecting the
involved parametric family of states with quantum error-
correcting codes31–35, which are applicable for the whole class
of noisy channels with the Kraus operators being arbitrary linear
combinations of the correctable error elements, is a good
candidate of a robust strategy for quantum metrology27–30.
However, QEC is overprotective because the measurement
precision remains the same as long as the QFI is preserved and
attained, even if the quantum states might be affected by some
uncorrectable errors. Here we shall develop a theory of QEC
specialized for metrology: on the one hand, our theory aims at
preserving the QFI instead of all the information encoded in
states, which ensures that our robust quantum metrological
schemes are not overprotective; on the other hand, our
specialized theory also possesses the great advantage of the
standard QEC that the errors can be digitalized for the
preservation and attainment of QFI, which is our first main result:

Theorem 1: the QFI of ry is preserved under a known channel
N with Kraus operators {Ej} if and only if

LyEj
ffiffiffiffiffi
ry

p ¼ EjLy
ffiffiffiffiffi
ry

p 8jð Þ ð4Þ

with Ly being the SLD operator for NðryÞ. If the QFI of ry is
preserved under a known noisy channel N , then it is preserved
under all noisy channels whose Kraus operators are arbitrary
linear combinations of {Ej}, with the optimal measurement being
the eigenstates of Ly.

We split the proof of Theorem 1 into three parts. First, we
prove in the Methods that equation (1) is the necessary and
sufficient condition on QFI preserving under a known noisy
channel. Second, for an arbitrary noisy channel K with Kraus
operators fKj ¼

P
i
cijEjg being unknown linear combinations of

{Ej}, we note that equation (4) still holds with Ej being replaced by
Kj, therefore, the QFI is preserved under the unknown noisy
channel K. Third, it is known that the complete set of the
eigenstates of the SLD operator is the optimal measurement
basis attaining the maximal Fisher information40. Through
equation (4), the SLD operator Ly for NðryÞ can be readily
checked to be also the SLD operator for KðryÞ. Therefore, the
measurement with respect to eigenstates of Ly is also optimal for
KðryÞ. Remarkably, if the measurement basis is fixed, then a
recovery operation is demanded to transform the basis of the
optimal measurement to the fixed one; otherwise, we only need to
perform the optimal measurement for noisy states, and no
recovery operation is demanded.

Theorem 1 can be understood in a geometric way. On the
manifold of pure states, there is a Riemannian metric known as
the Fubini–Study metric43,44. Along the parametric states cyj i, a
line element is given by ds cyj i; cy þ dyj ið Þ ¼ Dycyj ik kdy with
Dycyj i :¼ 1� cyj i cyh jð Þ d

dy cyj i being the covariant derivative
vector. This geometric metric is connected to parameter
estimation theory in twofold: on one hand, the QFI is given by
F cyj i cyh jð Þ ¼ 4 Dycyj ik k2; on the other hand, the SLD operator
Ly is a Hermitian representation of the covariant derivative as
Ly cyj i ¼ 2 Dycyj i, and the projective measurement with respect
to eigenstates of Ly attains the maximal Fisher information. In
Fig. 2, we show that how the conditions on the preservation of
QFI can be intuitively understood in this geometric picture.

Theorem 1 concerns the robustness of quantum parameter
estimation with respect to noise. It suggests that there might be a
probe state that does not maximize the QFI under a specific noisy
channel but ensures the QFI to be preserved and attained under
an entire class of noisy channels. The necessary and sufficient

condition (4) on preserving the QFI against a set of errors needs
the SLD operator Ly for the corresponding noisy state N ryð Þ.
Our second main result is the testable conditions on preserving
QFI without referring to the SLD operators of the noisy state.
These testable conditions are useful for finding good probe states
for certain errors, or identifying those errors to which the QFI
with certain probe state is immune.

Theorem 2: the QFI of cyj i is preserved under a set {Ej} of
errors, if and only if (i)

cyh jEyj EkLy cyj i¼ cyh jLyEyj Ek cyj i ð5Þ
for all j and k, and (ii)

P
j ajEj cyj i ¼ 0 for some ajAC infersP

j ajEjLy cyj i ¼ 0. For mixed state ry, the QFI is preserved if and
only if the above two conditions hold for all the states cyj i in the
range of ry.

The proof is sketched in the Methods (a full version is deferred
to the Supplementary Note 1). For a unitarily parameterized
family of pure states, cyj i¼ expð� iyHÞ cj i, by noting Ly cyj i ¼
� 2iDH cyj i with DH :¼ H� ch jH cj i, we simplify the two
testable conditions into the following: (i)

cyh j Eyj Ek;DH
n o

cyj i ¼ 0 ð6Þ

for all j and k and (ii)
P

j ajEj cyj i ¼ 0 for some ajAC infersP
j ajEjH j cyi ¼ 0. The testable conditions describe the mini-

mal requirements for the robustness of a parameter estimation
scheme against noise, and are looser than that of QEC for the
parametric family of states. Recall that a set {Ej} of errors is
correctable for a code space if and only if

fh jEyj Ek jj i ¼ 0; fh jEyj Ek fj i ¼ jh jEyj Ek jj i ð7Þ

are satisfied for all j, k and all pairs of orthonormal state vectors
fj i and jj i in the code space35. Let us choose cj i and H to be in
a standard quantum error-correcting code so that fj i / cyj i and
jj i / Ly cyj i are two orthonormal states in the coding subspace.
In such case, the first and second testable conditions are implied
by the first and second equalities in equation (7), respectively.
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Figure 2 | Geometrical picture for preserving QFI. The QFI F of cyj i
equals to the square of the Euclidean length of 2 Dycj i in terms of the

Fubini–Study metric on the manifold of pure states, where Dycyj i :¼
1� cyj i cyh jð Þ d

dy cyj i is the covariant derivative. For pure states, the

symmetric logarithmic derivative operator Ly is a Hermitian representation

of the covariant derivative as Ly cyj i ¼ 2 Dycyj i, and the projective

measurement with respect to eigenstates of Ly attains the maximal Fisher

information. Under a set {Ej} of errors, parametric state vectors are

transformed into Ej cyj i, while covariant derivative vectors into Ej Dycyj i.
The QFI is preserved under the errors if and only if there exists a Hermitian

operator Q transforming all the erroneous state vectors to the

corresponding erroneous covariant derivative vectors, that is, QEj cyj i ¼
2Ej Dycyj i for all j; this operator Q actually is the symmetric logarithmic

derivative operator for all the noisy states under the errors (see the

Methods section). The projective measurement with respect to eigenstates

of Q attains the maximal Fisher information in noisy states.
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Henceforth, we simply say that ry is a robust metrological
scheme with respect to a set {Ej} of errors if the QFI of ry is
preserved under {Ej}. We show below that concrete robust
metrological schemes can be easily constructed based on the
stabilizer formalism34. A stabilizer code CðSÞ is the joint þ 1
eigenspace of the stabilizer group S, which is an Abelian subgroup
of the n-qubit Pauli group, that is, Si cj i¼ cj i for all SiAS and all
cj i 2 CðSÞ. A set {Ej} of Pauli errors—Ej are also elements of the
n-qubit Pauli group—are correctable for this stabilizer code, if
each Eyj Ek is either in the stabilizer group, or detectable, that is,
anticommutes with at least one element of the stabilizer group34.

Theorem 3: in a metrological scheme cyj i ¼ e� iyH cj i where
the probe state cj i is taken from the coding subspace of a
stabilizer code CðSÞ capable of correcting errors {Ej} and
[H,S]¼ 0, the QFI is also immune to the errors fEj�Xg, where �X
is a Pauli error that commutes with S while anticommutes with
DHeff :¼PHP� ch jH cj i with P being the projection onto CðSÞ.
If the coding subspace is two dimensional, then the optimal
measurement is the joint measurement of S and �X.

The proof is sketched in the Methods (see Supplementary
Note 1 for a full proof). Theorem 3 can be easily used to identify
the QFI-immune error set for a given scheme. As an example, we
consider a system composed of n¼ 2tþ 1 qubits that are labelled
with the index set I¼ {1, 2, y, n}. Let us denote Xi, Yi and Zi
the tensor products of the Pauli matrices X, Y and Z on the ith
qubit and identity operators on other qubits, respectively, and
Oa ¼

Q
i2a Oi with a � I for O¼X, Y and Z. Let C be the two-

dimensional subspace stabilized by {Xa||a|¼ even}, which is
exactly the coding subspace of a stabilizer code capable of
correcting all t-qubit phase-flip errors {Za} with |a|rt. For any
state cj i 2 C such that ch jZI cj i ¼ 0, the metrological scheme
cyj i ¼ expð� iyZIÞ cj i preserves QFI against all t-qubit phase-
flip errors plus errors of type {Za XI}, which include essentially
arbitrary error on no more than t qubits, that is, those whose
error operators have nontrivial effects on no more than t qubits.
That is to say, in terms of QFI, the t-qubit phase-flip codes can be
used to protect a metrological scheme from arbitrary t-qubit
errors occurring after the signal sensing. In comparison, at least
five physical qubits are required in a standard quantum error-
correcting code to correct arbitrary single-qubit error, while our
scheme requires only three physical qubits. This is one of the
advantages brought in by considering the preservation of QFI
instead of the protection of quantum states. The maximal Fisher
information is attained by the joint measurement of the stabilizers
of C and XI, that is, all the observables {Xi|jAI} without any
recovery operation.

Entanglement-enhanced metrology. Beating the standard
quantum limit by quantum entanglement is one of the most
fascinating aspects of the quantum-enhanced metrology6–8. A
canonical example is utilizing the m-qubit Greenberger–Horne–
Zeilinger (GHZ) state as the probe state for the parallel samplings
of a unitary sensing transformation, wherein QFI scales
quadratically with m—the Heisenberg scaling. Replacing the
noisy individual systems in the entangled state by logical ones
makes the resulting scheme robust to correctable errors27. Here
we show that the entanglement, besides helps to beat the standard
quantum limit, also supplies a higher level of quantum error-
correcting code. Let us consider a metrological scheme whose
parametric family of states read

cyj i ¼ expð� iy
Xm
i¼1

�Z½i�Þð j �0i�m þ j �1i�mÞ=
ffiffiffi
2

p
; ð8Þ

where �Z½i� ¼
Qn

j¼1 Z
½i�
j are the logical Pauli Z operators on the ith

block, and �0j i and �1j i are the logical basis states. Let S½i� ¼ fX½i�
a j

j a j is eveng be the stabilizer group of the n-qubit phase-flip code
for the ith qubit in the original scheme. Further, assume that m
and n¼ 2tþ 1 are odd. This scheme is robust against to three
kinds of errors occurring after the signal sensing. First, less than
or equal to t phase-flip errors are correctable by phase-flip code in
each block. Second, the states given by equation (8) are in a
subspace stabilized by �Z½i��Z½iþ 1�, which is a bit-flip code capable of
correcting no more than (m� 1)/2 logical bit-flip errors in the
blocks. Since every single-qubit bit-flip error on the codewords of
the phase-flip code in each block is equivalent to a logical bit-flip
error on the block, less than or equal to (m� 1)/2 physical
bit-flip errors are correctable. Third, for more than (m� 1)/2
bit-flip errors, the parametric family of states cannot be recovered
but the QFI is still preserved. Moreover, the joint measurement of

all the stabilizers X½i�
j X

½i�
jþ 1 and �Z½i��Z½iþ 1� of the stabilizer code

together with
Q

ij X
½i�
j attain the maximal Fisher information. In

ref. 27, Dür et al. proposed the same metrological scheme as
equation (8) but only the protective capability of the error-
correcting codes in each block was explored; we note that the
GHZ state itself provides a higher-level bit-flip code and find
some uncorrectable errors that are harmless to QFI.

Noise during the signal accumulation. The above results still
hold for the noise during the signal accumulation if the generator
of the noise commutes with that of the signal accumulation.
A simple case of this kind is that the error operators Ej commute
with the generating operator H of the signal accumulation; but in
such a case, our method is equivalent to the protection of
quantum states27 as the additional errors fEj�Xg given by theorem
3 do not commute with H. However, the errors that can be
deferred after the signal accumulation are not restricted in this
case. Therefore, our method still has potential advantages over the
protection of quantum states for the deferrable noise. Let us
consider a quantum system that evolves as

drðtÞ
dt

¼ oĈrðtÞþ D̂rðtÞ; ð9Þ

where o is the signal parameter to be sensed and estimated, the
superoperators Ĉ and D̂ are the generators of the signal
accumulation and the noise, respectively. Usually, ĈrðtÞ ¼
� i½H; rðtÞ� so that for the noiseless case the signal
accumulation is unitary. The noise can be deferred after the
signal accumulation if the superoperator Ĉ commutes with D̂, so
that the total evolution is expðtD̂Þ expðotĈÞ. This does not imply
that the Kraus operators for expðtD̂Þ commute with the operator
H. For example, let us consider the phase accumulation
of an atom under spontaneous emission, where H¼Z and
D̂r ¼ gðs� rsw�� sw� s� r=2�rsw� s� =2Þ with s_¼ (X� iY)/
2. The Kraus operators for expðtD̂Þ are given by E1 ¼

ffiffi
Z

p þ 1
2 I

þ
ffiffi
Z

p � 1
2 Z and E2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� Z

p
s� with Z¼ e� gt. It can be shown

that D̂ commutes with Ĉ, nevertheless [E2,H]a0.

Physical example. Here we give a physical example to quantita-
tively analyse the performance of robust metrological schemes
with the QFI protection. Let us consider the frequency estimation
of atoms with uncorrelated parallel and transverse dephasing. The
atoms are modelled by qubits whose evolution is still in the form
of equation (9). The noise is described by D̂ ¼ ðgxD̂x þ gzD̂zÞ=2,
where gx and gz are the strengths of the noise,
D̂xr ¼

PN
i¼1 XirXi �rð Þ, and D̂zr ¼

PN
i¼1 ZirZi � rð Þ with N

being the total number of qubits. The qubits are divided into
m ¼ bN=nc blocks. The probe state is the logical GHZ states
with respect to n-qubit phase-flip code in each block, and the
generating operator of the signal accumulation is given by
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H ¼ 1
2

Pm
i¼1

�Z½i�. This scheme was first proposed by Dür et al.27 to
subdue only the parallel dephasing. When n¼ 1, this scheme is
reduced to the ordinary one of using the raw GHZ probe state
and independent signal accumulation6. Note that D̂z commutes
with both Ĉ and D̂x . For short measurement times such
that Ng2xt

2 � 1 and No2t2oo1, by approximation of Trotter
expansion, it can be shown that rðtÞ 	 expðgztD̂z=2Þ
expðgxtD̂x=2ÞexpðotĈÞrð0Þ. Note that expðgatD̂a=2Þ ¼QN

i¼1 V̂a;i for a¼ x, z with V̂x;i : r 7!ð1� pxÞrþ pxXirXi and
V̂z;i : r7!ð1� pzÞrþ pzZirZi, where pa ¼ ð1� e� gatÞ=2. In the
case of the raw GHZ state scenario (that is, n¼ 1), we obtain the
exact result of the QFI about o as

F½rðtÞ� ¼N2t2 �N2t2
XðN � 1Þ=2

k¼0

N

k

� �

2akð1� x2kÞð1� y2kÞ
2� x2k � y2k þðy2k � x2kÞcos2Not

;

ð10Þ

where

ak ¼ pkxð1� pxÞN � k þ pN � k
x ð1� pxÞk;

xk ¼ ð1� 2pzÞN ;

yk ¼ ð1� 2pzÞN
ð1� pxÞN � 2k � pN � 2k

x

ð1� pxÞN � 2k þ pN � 2k
x

ð11Þ

(See Supplementary Note 2 for the detailed calculations). When
gx¼ 0, we have F½rðtÞ� ¼ e� 2Ngz tN2t2, which is consistent with
the result of ref. 9. When gz¼ 0, we have F[r(t)]¼N2t2, which is
consistent with theorem 3 as the QFI is totally preserved if there
are only bit-flip errors. Note that this is not explicit if we only
consider the protection of quantum states. Moreover, as long as pz
is small such that (1� 2pz)N is close to 1, the QFI of the noisy
states is close to N2t2 and insensitive to px. Therefore, the phase-
flip code is enough to protect the QFI against the parallel and
transversal dephasing in such a situation.

The logical GHZ state scenario, where n is an odd number
greater than one, can be recast into the raw GHZ state scenario by
noting that only logical errors remain after the error correction in
each block. Since less than or equal to (n� 1)/2 phase-flip errors
are corrected, the probability of the logical phase-flip error is

suppressed to �pz ¼
Pðn� 1Þ=2

k¼0 ðnkÞpn� k
z ð1� pzÞk, see ref. 27. Note

that each single-qubit bit-flip error is equivalent to a logical bit-
flip error on that block. The probability of the logical bit-flip error
is �px ¼ ½1�ð1� 2pxÞn�=2. Then, the QFI of the noisy states in the
logical GHZ state scenario can also be given through equations
(10) and (11) via substituting px, pz and N by �px , �pz and N=nb c,
respectively. Note that �px4px for 0opxo1/2, which means that
the bit-flip errors are amplified. However, as long as the phase-
flip errors are sufficiently suppressed, the bit-flip errors in the
GHZ state scenario are almost harmless to QFI.

For instance, it is shown in Fig. 3 that in the raw GHZ state
scenario the quantum Cramér–Rao bound rises when the
destructive effect of the noise on the QFI is dominant over the
gain of the signal accumulation, whereas the use of the error
correction can suppress the phase-flip errors so that the quantum
states can gain more QFI by the signal accumulation process for a
long time even in the presence of the bit-flip errors. In Fig. 4, we
show that using the phase-flip QEC code the quantum
Cramér–Rao bound has a Heisenberg scaling with a constant
factor, that is, dô 
 n=N . Note that here the size n of the block is
a fixed small integer, for example, n¼ 3 for the three-qubit phase-
flip code in each block. Therefore, when N becomes large, n/N
will be much smaller than the standard quantum limit 1=

ffiffiffiffi
N

p
. In

this comparison, the resources are measured by the total number
of the physical qubits used. However, it should be noted that the
signal accumulation processes are different in the two scenarios.

Discussion
The scenario considered in this work assumes a model where the
noise occurs after the signal sensing. This coincides with analogue
communication over noisy quantum channels45, where analogue
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Figure 3 | Quantum Cramér–Rao bounds of a single-shot measurement.

The estimation error dô :¼ hðô= j dhôido j �oÞ2i1=2, represented by the

vertical axis, is bounded from below by the quantum Cramér–Rao bounds

(the curves in the figure). The horizontal axis represents the time of the

signal accumulation process. Here the total number of qubits is N¼ 15,

which is divided into blocks of size n¼ 1, 3, 5 and 15. Each block is protected

by an n-qubit phase-flip code. The probe state is the logical GHZ state, and

the sensing transformation is the independent logical phase accumulation.

The figure is plotted at o¼0.001, gx¼0.001 and gz¼0.5.
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the raw phase accumulation, the quantum Cramér–Rao bounds cannot

follow the Heisenberg scale when N is large, see the magenta square

markers for the first kind of noise with gx¼ 5� 10�4 and gz¼ 5� 10� 3,

and the blue triangle markers for the second kind of noise with gx¼ 10� 3

and gz¼ 10� 2. In the scenario of using the logical GHZ states and the

logical phase accumulation with the three-qubit phase-flip code in each

block, the quantum Cramér–Rao bounds for the first and second kinds of

noise are so close that they are visually indistinguishable in the

figure (denoted by turquoise circle marker), which reflects the robustness

of the scheme. Furthermore, in the logical scenario, the quantum

Cramér–Rao bounds follow well the Heisenberg scale of 3/N (black solid

line). The figure is plotted at o¼0.001 and t¼ 1.
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signals are encoded in quantum states, transmitted over a noisy
quantum channel and estimated by the receivers. The assumed
model is also applicable for the sensing-stage noise whose
generator is commuting with that of the signal sensing. Some
known examples belonging to this class include the
depolarization, the dephasing and the spontaneous emission11

in the two-level systems with the signal sensing generated by
the Pauli Z matrix, and the photon loss16 and the phase
diffusion25 in the optical fields with the signal sensing generated
by the photon number operator. For realistic instruments
where the noise may be very complicated, our method can be
applied together with other technologies such as dynamical
decoupling29.

In summary, we have established a theory of error correction
designed for quantum metrology in the context of quantum
estimation theory. The purpose of our specialized QEC is to
preserve the QFI, which determines the best precision of
estimating the value of a parameter, instead of the quantum
states themselves. We have given testable conditions to identify
the errors to which the QFI is immune, and constructed the
optimal measurements in noisy states for the best estimation
precision. While in the standard QEC any states, mixed or pure,
in the coding subspace can be used in a metrological scheme, our
conditions do not generally give rise to a subspace, instead only a
special set of states that can serve our purpose. Our method can
be readily applied for some parameter estimation problems,
especially for those in the stabilizer formalism. Comparing with
the standard stabilizer codes, our theory has the advantages of,
firstly, being capable of preserving QFI against more errors using
the same amount of resources and, secondly, sparing the recovery
operations.

Methods
Condition for preserving QFI. Let us start with a crucial observation on the loss of
QFI after a known noisy channel. For a given channel N with Kraus operators {Ej},
we denote V a unitary representation on the system plus an ancilla in the state ra
such that

NðryÞ¼
X
j

EjryE
y
j ¼ Tra½Vðry � raÞVy�; ð12Þ

where Tra is the partial trace over the ancilla. For the sake of rigorousness, we
assume that we always have bounded SLD operators henceforth, that is, SLD
operators Ly and Ly for states ry and N ryð Þ, respectively, exist and are finite. The
loss of QFI can be expressed as (see Supplementary Note 1)

DF ry;Nð Þ : ¼ F ryð Þ� F N ryð Þð Þ
¼ min

Q2Herm Nð Þ
E ry;N ;Qð Þ

¼
X
j

ðLyEj � EjLyÞ
ffiffiffiffiffi
ry

p�� ��2
HS
;

ð13Þ

where Herm Nð Þ denotes the set of all bounded Hermitian operators on the Hilbert

space associated with the output of N , Ok kHS:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðOyOÞ

q
is the Hilbert–

Schmidt norm of the operator O, and

Eðry;N ;QÞ :¼ hðVyðQ � 1ÞV � Ly � 1Þ2iry � ra
ð14Þ

is exactly the square of the measurement error used by Ozawa to derive his error–
disturbance uncertainty relation46. From equation (13), we see that the loss of QFI
can be understood as the minimal measurement error of measuring a Hermitian
operator Q after the given noisy channel compared with measuring Ly before the
noisy channel. We note that due to equation (13), the following statements are
equivalent:

(a) DFðry;NÞ ¼ 0.
(b) There exists a Hermitian operator Q such that QEj

ffiffiffiffiffi
ry

p ¼ EjLy
ffiffiffiffiffi
ry

p
is

satisfied for all j.
(c) LyEj

ffiffiffiffiffi
ry

p ¼ EjLy
ffiffiffiffiffi
ry

p
is satisfied for all j.

Sketch of the proof. The necessary and sufficient condition (4) for the pre-
servation of QFI under a known noisy channel follows from the equivalence
between (a) and (c). Theorem 1 is a consequence of equation (4). The geometric

picture illustrated in Fig. 2 is due to the equivalence between (a) and (b). Theorem
2 is implied by the equivalence between (a) and (b) together with the following
lemma, for which we give a constructive proof in Supplementary Note 1.

Lemma 1: for two indexed families of vectors |sji and |dji, there exists a
Hermitian operator Q such that Q|sji¼ |dji for all j, if and only if (i) hsj|dki¼ hdj|ski
for all j and k and (ii) for all aj such that

P
j aj j sji ¼ 0,

P
j aj jdji ¼ 0 must be

satisfied.
Theorem 3 follows from the satisfaction of the two testable conditions in

Theorem 2 for the errors fEj �Xtg with t¼ 0,1, where �X is a Pauli error that
commutes with the stabilizer of the code S and anticommutes with DHeff. The full
proof is presented in Supplementary Note 1.

The theorems and the lemma in this paper are also valid for infinite
dimensional systems, as long as the SLD operator for the given parametric family of
states is bounded.
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