Table 2 Results of generalised least squares regression of log10 subsampled marine genus biodiversity (quorum=0.4) on the δ18O palaeotemperature proxy of Prokoph et al.40 and estimated sea level18.

From: Climate constrains the evolutionary history and biodiversity of crocodylians

Environment

Region

Independent variable

N

GLS

OLS (untransformed)

    

Phi

Int.

Slope

Int.

Slope

R 2

Subsampled.

 Marine

Global

Prokoph δ18O

12

0.68

0.26

−0.05 (0.227)

0.32

−0.03 (0.539)

-0.06

 Marine

Global

Prokoph δ18O

12

0.88

0.25

−0.05 (0.188)

0.31

−0.03 (0.581)

-0.17

  

+phase

   

−0.09 (0.503)

 

0.003 (0.972)

 

 Marine

Global

Sea level

12

0.47

0.32

0.001 (0.159)

0.33

0.002 (0.114)

0.15

 Marine

Global

Sea level

12

−0.01

0.46

0.005** (0.002)

0.46

0.005** (0.002)

0.61

  

+phase

   

−0.25** (0.006)

 

−0.249** (0.006)

 

Counted.

 Marine

Global

Prokoph δ18O

18

0.57

0.64

0.047 (0.500)

0.67

0.067 (0.373)

-0.01

 Marine

Global

Prokoph δ18O

18

0.52

0.87

0.066 (0.331)

0.91

0.093 (0.184)

0.19

  

+phase

   

−0.302 (0.155)

 

−0.311** (0.042)

 

 Marine

Global

Sea level

18

0.72

0.60

0.004 (0.172)

0.62

<0.000 (0.978)

-0.06

 Marine

Global

Sea level

18

0.54

0.89

0.005* (0.068)

0.96

0.006** (0.047)

0.30

  

+phase

   

−0.439* (0.050)

 

−0.545** (0.008)

 
  1. ‘GLS’ denotes generalised least squares regression incorporating a first-order autoregressive covariance model; OLS denotes ordinary least squares regression; ‘fd’ indicates that first-differencing was applied to the input data series; phi is the serial correlation coefficient70; ‘Int.’ is the y-intercept; R2 is the adjusted R2 of ordinary least squares regression, and comparable R2 values cannot be computed for generalised least squares. ; **significant at alpha=0.05 (significance).
  2. including a binary variable indicating the Jurassic–Early Cretaceous marine radiation as “1” and the Late Cretaceous–Cenozoic marine radiation as ‘2’