Figure 4: First-principles-based modelling results of few-layer BP.
From: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus

(a) High symmetry points in the Brillouin zone (left) and crystal structure (right) of black phosphorus. (b) Phonon dispersion (energy E versus momentum q) along high symmetry points. (c) Number of conducting phonon modes per cross-sectional area versus energy. (d) Average number of thermally active phonon modes per cross-sectional area as a function of temperature. (e) Ballistic thermal conductance as a function of temperature. (f,g) Normalized cumulative thermal conductivity at 300 K versus phonon MFP for backscattering (using phenomenological scattering models for Umklapp and surface scattering with specularity parameter p=0) for transport along armchair and zigzag directions.