Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: new immunomodulatory therapies in type 1 diabetes

Abstract

Animal models and human studies have provided strong evidence that the immune response that causes type 1A diabetes is initiated against a limited array of antigens but acquires breadth and depth until β-cell mass has been critically compromised. Two recent trials confirmed the ability to identify relatives at risk for development of diabetes, but were unsuccessful in preventing disease. Treatment of at-risk individuals with oral insulin, which is postulated to be an antigen in the disease, did however show efficacy in a subgroup of these subjects, suggesting that antigen-specific prevention approaches might be successful in the right group of subjects at the right time. Earlier trials showed that the natural progression of disease can be altered with conventional immune suppression but these approaches have been supplanted by tolerance-induction strategies. Anti-CD3 monoclonal antibodies have shown efficacy in preventing the loss of insulin production over the first 2 years of disease without chronic immune suppression. The mechanisms are novel, and appear to involve induction of immune regulation by the monoclonal antibody. Ultimately, preservation and even improvement in β-cell mass is the goal of therapy. The means needed to achieve this will depend on the timing and mechanisms of the immune intervention and might require combinations of agents.

Key Points

  • Type 1A diabetes mellitus results form the progressive and specific autoimmune destruction of insulin-secreting pancreatic β cells; the disease develops over a period of years and continues after initial clinical presentation

  • The ultimate goal of therapeutic interventions is preservation (and even increase) of β-cell mass; the level of endogenous β-cell function is related to the ease and stability of metabolic control

  • Identification of suitable candidates for therapy, appropriate timing and specificity of intervention are critical for successful intervention; high-risk relatives of patients with type 1 diabetes can be identified using a combination of metabolic and immunologic measurements

  • New approaches for immune therapy such as anti-CD3 antibodies have shown success in modulating the natural history of the disease without the need for chronic immune suppression; in the future, to cause lasting remission of disease, it is likely that combinatorial approaches will be needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expansion and diversification of the autoimmune response precedes clinical type 1 diabetes mellitus

Similar content being viewed by others

References

  1. Gianani R and Eisenbarth GS (2005) The stages of type 1A diabetes: 2005. Immunol Rev 204: 232–249

    Article  CAS  PubMed  Google Scholar 

  2. Steele C et al. (2004) Insulin secretion in type 1 diabetes. Diabetes 53: 426–433

    Article  CAS  PubMed  Google Scholar 

  3. Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14: 619–633

    Article  CAS  PubMed  Google Scholar 

  4. Keymeulen B et al. (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352: 2598–2608

    Article  CAS  PubMed  Google Scholar 

  5. Teuscher AU et al. (1998) Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes 47: 324–330

    Article  CAS  PubMed  Google Scholar 

  6. Chase HP et al. (2004) Redefining the clinical remission period in children with type 1 diabetes. Pediatr Diabetes 5: 16–19

    Article  PubMed  Google Scholar 

  7. Strandell E et al. (1990) Reversal of β-cell suppression in vitro in pancreatic islets isolated from nonobese diabetic mice during the phase preceding insulin-dependent diabetes mellitus. J Clin Invest 85: 1944–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sempe P et al. (1991) Anti-α/β T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice. Eur J Immunol 21: 1163–1169

    Article  CAS  PubMed  Google Scholar 

  9. Palmer JP et al. (2004) C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function: report of an ADA workshop, 21-22 October 2001. Diabetes 53: 250–264

    Article  CAS  PubMed  Google Scholar 

  10. Robey E and Fowlkes BJ (1994) Selective events in T cell development. Annu Rev Immunol 12: 675–705

    Article  CAS  PubMed  Google Scholar 

  11. Arif S et al. (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113: 451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rossini AA (2004) Autoimmune diabetes and the circle of tolerance. Diabetes 53: 267–275

    Article  CAS  PubMed  Google Scholar 

  13. Roncarolo MG et al. (2001) Type 1 T regulatory cells. Immunol Rev 182: 68–79

    Article  CAS  PubMed  Google Scholar 

  14. Bach JF and Chatenoud L (2001) Tolerance to islet autoantigens in type 1 diabetes. Annu Rev Immunol 19: 131–161

    Article  CAS  PubMed  Google Scholar 

  15. Bluestone JA and Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3: 253–257

    Article  CAS  PubMed  Google Scholar 

  16. Rabinovitch A (1998) An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab Rev 14: 129–151

    Article  CAS  PubMed  Google Scholar 

  17. Katz JD et al. (1995) T helper cell subsets in insulin-dependent diabetes. Science 268: 1185–1188

    Article  CAS  PubMed  Google Scholar 

  18. Herold KC (2004) Achieving antigen-specific immune regulation. J Clin Invest 113: 346–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saoudi A et al. (1996) The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J Exp Med 184: 2393–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salomon B et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12: 431–440

    Article  CAS  PubMed  Google Scholar 

  21. Shevach EM (2000) Regulatory T cells in autoimmmunity. Annu Rev Immunol 18: 423–449

    Article  CAS  PubMed  Google Scholar 

  22. Walker MR et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J Clin Invest 112: 1437–1443

    Article  CAS  PubMed  Google Scholar 

  23. Apostolou I and von Boehmer H (2004) In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199: 1401–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brusko TM et al. (2005) Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414

    Article  CAS  PubMed  Google Scholar 

  25. Green AE et al. (2003) CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-β receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 100: 10878–10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorus FK et al. (1997) IA-2-autoantibodies complement GAD65-autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. The Belgian Diabetes Registry. Diabetologia 40: 95–99

    Article  CAS  PubMed  Google Scholar 

  27. Lieberman SM et al. (2003) Identification of the β cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci USA 100: 8384–8388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones DB et al. (1990) Heat-shock protein 65 as a β cell antigen of insulin-dependent diabetes. Lancet 336: 583–585

    Article  CAS  PubMed  Google Scholar 

  29. Kent SC et al. (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435: 224–228

    Article  CAS  PubMed  Google Scholar 

  30. Nakayama M et al. (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435: 220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sercarz EE (2000) Driver clones and determinant spreading. J Autoimmun 14: 275–277

    Article  CAS  PubMed  Google Scholar 

  32. Yu L et al. (1996) Anti-islet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab 81: 4264–4267

    CAS  PubMed  Google Scholar 

  33. Diabetes Prevention Trial—Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 1685–1691

  34. Skyler JS et al. (2005) Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial—Type 1. Diabetes Care 28: 1068–1076

    Article  CAS  PubMed  Google Scholar 

  35. Mandrup-Poulsen T et al. (1993) Nicotinamide treatment in the prevention of insulin-dependent diabetes mellitus. Diabetes Metab Rev 9: 295–309

    Article  CAS  PubMed  Google Scholar 

  36. Gale EA et al. (2004) European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 363: 925–931

    Article  CAS  PubMed  Google Scholar 

  37. Shoda LK et al. (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23: 115–126

    Article  CAS  PubMed  Google Scholar 

  38. Gale EA (2003) Intervening before the onset of type 1 diabetes: baseline data from the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetologia 46: 339–346

    Article  Google Scholar 

  39. Hagopian WA et al. (1995) Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95: 1505–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Riley WJ et al. (1990) A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes. N Engl J Med 323: 1167–1172

    Article  CAS  PubMed  Google Scholar 

  41. Hummel M et al. (2004) Psychological impact of childhood islet autoantibody testing in families participating in the BABYDIAB study. Diabet Med 21: 324–328

    Article  CAS  PubMed  Google Scholar 

  42. Johnson SB et al. (1990) Psychological impact of islet cell-antibody screening. Preliminary results. Diabetes Care 13: 93–97

    Article  CAS  PubMed  Google Scholar 

  43. Bougneres PF et al. (1988) Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med 318: 663–670

    Article  CAS  PubMed  Google Scholar 

  44. Stiller CR et al. (1984) Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science 223: 1362–1367

    Article  CAS  PubMed  Google Scholar 

  45. Silverstein J et al. (1988) Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 319: 599–604

    Article  CAS  PubMed  Google Scholar 

  46. Eisenbarth GS et al. (1985) Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus. Diabetes Res 2: 271–276

    CAS  PubMed  Google Scholar 

  47. Harrison LC et al. (1985) Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. Diabetes 34: 1306–1308

    Article  CAS  PubMed  Google Scholar 

  48. Bougneres PF et al. (1990) Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes 39: 1264–1272

    Article  CAS  PubMed  Google Scholar 

  49. Parving HH et al. (1999) Cyclosporine nephrotoxicity in type 1 diabetic patients. A 7-year follow-up study. Diabetes Care 22: 478–483

    Article  CAS  PubMed  Google Scholar 

  50. Maki T et al. (1992) Long-term abrogation of autoimmune diabetes in nonobese diabetic mice by immunotherapy with anti-lymphocyte serum. Proc Natl Acad Sci USA 89: 3434–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harrison LC et al. (2004) Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 27: 2348–2355

    Article  CAS  PubMed  Google Scholar 

  52. Kaufman DL et al. (1993) Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366: 69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tisch R et al. (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366: 72–75

    Article  CAS  PubMed  Google Scholar 

  54. Tian J et al. (1996) Nasal administration of glutamate decarboxylase (GAD65) peptides induces TH2 responses and prevents murine insulin-dependent diabetes. J Exp Med 183: 1561–1567

    Article  CAS  PubMed  Google Scholar 

  55. Tian J et al. (1996) Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nat Med 2: 1348–1353

    Article  CAS  PubMed  Google Scholar 

  56. Agardh CD et al. (2005) Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 19: 238–246

    Article  PubMed  Google Scholar 

  57. Brudzynski K et al. (1992) Secretory granule autoantigen in insulin-dependent diabetes mellitus is related to 62 kDa heat-shock protein (hsp60). J Autoimmun 5: 453–463

    Article  CAS  PubMed  Google Scholar 

  58. Elias D et al. (1991) Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci USA 88: 3088–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raz I et al. (2001) β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358: 1749–1753

    Article  CAS  PubMed  Google Scholar 

  60. Zanin-Zhorov A et al. (2005) Heat shock protein 60 inhibits TH1-mediated hepatitis model via innate regulation of TH1/TH2 transcription factors and cytokines. J Immunol 174: 3227–3236

    Article  CAS  PubMed  Google Scholar 

  61. Chatenoud L et al. (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158: 2947–2954

    CAS  PubMed  Google Scholar 

  62. Chatenoud L et al. (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci USA 91: 123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herold KC et al. (2003) Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala–Ala). J Clin Invest 111: 409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu D et al. (2000) In vitro characterization of five humanized OKT3 effector function variant antibodies Cell Immunol 200: 16–26

    Article  CAS  PubMed  Google Scholar 

  65. Herold KC et al. (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346: 1692–1698

    Article  CAS  PubMed  Google Scholar 

  66. Herold KC et al. (2005) A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala–Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54: 1763–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chatenoud L et al. (2001) Suppressor T cells—they're back and critical for regulation of autoimmunity! Immunol Rev 182: 149–163

    Article  CAS  PubMed  Google Scholar 

  68. Belghith M et al. (2003) TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9: 1202–1208

    Article  CAS  PubMed  Google Scholar 

  69. Bisikirska B et al. (2005) TCR stimulation with modified anti-CD3 mAb expands CD8 T cell population and induces CD8+CD25+ Tregs . J Clin Invest 115: 2904–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonner-Weir S (2000) Perspective: postnatal pancreatic β cell growth. Endocrinology 141: 1926–1929

    Article  CAS  PubMed  Google Scholar 

  71. Xu G et al. (1999) Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48: 2270–2276

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Ocana A et al. (2000) Hepatocyte growth factor overexpression in the islet of transgenic mice increases β cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 275: 1226–1232

    Article  CAS  PubMed  Google Scholar 

  73. Service GJ et al. (2005) Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med 353: 249–254

    Article  CAS  PubMed  Google Scholar 

  74. Cummings DE (2005) Gastric bypass and nesidioblastosis—too much of a good thing for islets? New Eng J Med 353: 300–302

    Article  CAS  PubMed  Google Scholar 

  75. Li Y et al. (2003) Glucagon-like peptide-1 receptor signaling modulates β cell apoptosis. J Biol Chem 278: 471–478

    Article  CAS  PubMed  Google Scholar 

  76. Ogawa N et al. (2004) Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53: 1700–1705

    Article  CAS  PubMed  Google Scholar 

  77. Daneman D and Clarson C (1987) Residual β-cell function in children with type 1 diabetes: measurement and impact on glycemic control. Clin Invest Med 10: 484–487

    CAS  PubMed  Google Scholar 

  78. Clarson C et al. (1987) Residual β-cell function in children with IDDM: reproducibility of testing and factors influencing insulin secretory reserve. Diabetes Care 10: 33–38

    Article  CAS  PubMed  Google Scholar 

  79. The Diabetes Control and Complications Trial Research Group (1998) Effect of intensive therapy on residual β-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. Ann Intern Med 128: 517–523

  80. Steffes MW et al. (2003) β-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 26: 832–836

    Article  PubMed  Google Scholar 

  81. Eisenbarth G (1986) Type I diabetes mellitus. A chronic autoimmune disease. New Eng J Med 314: 1360–1368

    Article  CAS  PubMed  Google Scholar 

  82. Eisenbarth G (1984) Autoimmune β cell insufficiency—diabetes mellitus type 1. Triangle 23: 111–124

    Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health grants DK57846, AI98-010, DK063608, RR00645, and DK063608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan C Herold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernea, S., Herold, K. Drug Insight: new immunomodulatory therapies in type 1 diabetes. Nat Rev Endocrinol 2, 89–98 (2006). https://doi.org/10.1038/ncpendmet0082

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncpendmet0082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing