Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Relationship of Plasminogen Activator to Fibrin

Abstract

THERE are two principal theories of the mechanism of thrombus dissolution by the fibrinolytic system. Alkjaersig et al.1 suggested that as fibrin polymerizes, plasminogen is adsorbed preferentially to the fibrin and is available in large quantities within a thrombus which is comparatively free of antiplasmin. When an activator enters the circulation it diffuses into the clot converting the plasminogen to plasmin in situ and so promotes lysis. Ambrus and Markus2, however, proposed that when plasmin forms in the circulation naturally or during infusion of an activator it is normally bound to the excess antiplasmin present in blood. They suggested that this plasmin/antiplasmin complex is reversible and dissociates in the presence of fibrin, its preferred substrate, so allowing the plasmin to bring about fibrin dissolution by “external lysis”. Neither of these theories, however, is supported by an observed phenomena.

This is a preview of subscription content, access via your institution

Access options

References

  1. Alkjaersig, N., Fletcher, A. P., and Sherry, S., J. Clin. Invest., 38, 1086 (1959).

    Article  CAS  Google Scholar 

  2. Ambrus, C. M., and Markus, G., Amer. J. Physiol., 199, 491 (1960).

    Article  CAS  Google Scholar 

  3. de Wit, C. D., Vox Sang., 7, 526 (1962).

    Article  CAS  Google Scholar 

  4. Ogston, D., Ogston, C. M., and Fullerton, H. W., Thrombos. Diathes. Haemorrh., 15, 220 (1966).

    Article  CAS  Google Scholar 

  5. Gottlob, R., and Blümmel, G., Thrombos. Diathes. Haemorrh., 15, 570 (1966).

    Article  CAS  Google Scholar 

  6. Gottlob, R., and Blümmel, G., Thrombos. Diathes. Haemorrh., 19, 94 (1968).

    Article  CAS  Google Scholar 

  7. Lassen, M., Acta Chem. Scand., 12, 1825 (1958).

    Article  CAS  Google Scholar 

  8. Fearnley, G. R., Nature, 172, 544 (1953).

    Article  CAS  Google Scholar 

  9. Dalai, P. M., Shah, P. M., Allington, M. J., and Sharp, A. A., Nature, 111, 988 (1969).

    Article  Google Scholar 

  10. Mosesson, M. W., Biochim. Biophys. Acta, 57, 204 (1962).

    Article  CAS  Google Scholar 

  11. Konttinen, Y. P., Fibrinolysis (Oy STAR Ab, Tampere, Finland, 1968).

  12. Poole, J. C., Quart. J. Exp. Physiol, 44, 372 (1959).

    Google Scholar 

  13. Astrup, T., and Mullertz, S., Arch. Biochem. Biophys., 40, 346 (1952).

    Article  CAS  Google Scholar 

  14. Fantl, P., Science, 135, 787 (1962).

    Article  CAS  Google Scholar 

  15. Hedner, U., Nilsson, I. M., and Robertson, B., Thrombos. Diathes. Haemorrh., 16, 38 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHESTERMAN, C., ALLINGTON, M. & SHARP, A. Relationship of Plasminogen Activator to Fibrin. Nature New Biology 238, 15–17 (1972). https://doi.org/10.1038/newbio238015a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/newbio238015a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing