Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Affinity Chromatography of β-Galactosidase Fragments

Abstract

AFFINITY chromatography has been used extensively for purification of enzymes by specific, reversible binding of the active site to a substrate analogue coupled to an insoluble matrix1. Escherichia coli β-galactosidase has been purified by this method2. The enzyme is composed of four identical subunits of molecular weight 135,000, each containing an active site3. Many Z (β-galactosidase) gene mutant strains are available which produce only a portion of the polypeptide chain. These polypeptides, which are enzymatically inactive, cross-react with antibody prepared to the wild type enzyme4. We have used affinity chromatography to determine whether incomplete polypeptide chains from a variety of Z gene mutants are folded in the conformation necessary for recognition of substrate. Specific alkylation with a substrate analogue was also used as a test for the presence of a substrate binding site. The use of mutant chains containing different regions of the β-galactosidase sequence made it possible to determine which portions of the molecule are most directly involved in the formation of the binding site.

This is a preview of subscription content, access via your institution

Access options

References

  1. Cuatrecasas, P., and Anfinsen, C., Ann. Rev. Biochem., 40, 259 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Steers, jun., E., Cuatrecasas, P., and Pollard, H. B., J. Biol. Chem., 246, 196 (1971).

    CAS  PubMed  Google Scholar 

  3. Zabin, I., and Fowler, A. V., in The Lactose Operon (edit, by Beckwith, J. R., and Zipser, D.), 27 (Cold Spring Harbor, New York, 1970).

    Google Scholar 

  4. Fowler, A. V., and Zabin, I., J. Mol. Biol., 33, 35 (1968).

    Article  CAS  PubMed  Google Scholar 

  5. Horiuchi, T., Tomizawa, J., and Novick, A., Biochim. Biophys. Acta, 55, 152 (1962).

    Article  CAS  PubMed  Google Scholar 

  6. Ullmann, A., and Perrin, D., in The Lactose Operon (edit, by Beckwith, J. R., and Zipser, D.), 143 (Cold Spring Harbor, New York, 1970).

    Google Scholar 

  7. Lin, S., and Zabin, I., J. Biol. Chem., 247, 2205 (1972).

    CAS  PubMed  Google Scholar 

  8. Naider, F., Bohak, Z., and Yariv, J., Biochemistry, 11, 3202 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Goldschmidt, R., Nature, 228, 1151 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. Villarejo, M., Zamenhof, P. J., and Zabin, I., J. Biol. Chem., 247, 2212 (1972).

    CAS  PubMed  Google Scholar 

  11. Platt, T., Weber, K., Ganem, D., and Miller, J. H., Proc. US Nat. Acad. Sci., 69, 897 (1972).

    Article  CAS  Google Scholar 

  12. Platt, T., Miller, J. H., and Weber, K., Nature, 228, 1154 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VILLAREJO, M., ZABIN, I. Affinity Chromatography of β-Galactosidase Fragments. Nature New Biology 242, 50–52 (1973). https://doi.org/10.1038/newbio242050a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/newbio242050a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing