Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Haemoglobin P-Nilotic containing a β-δ Chain

Abstract

HAEMOGLOBIN P has been found amongst Nilotic populations of the then Belgian Congo, now called Zaire1,2 (Hb P Congo), and in the USA (Hb P Galveston)3. The abnormality in Hb P Galveston has been identified as β117 G19 His→Arg3, but the abnormality in Hb P Congo seems to be more complex and it has been suggested by Lehmann and Charlesworth4 that it is a “reversed Lepore” haemoglobin with a hybrid β-δ chain. In an extensive family study Dherte, Lehmann and Vandepitte1 found one man who had inherited Hbs A, S and P. His wife was a normal A/A homozygote and their children were all either A/S or A/P heterozygotes. Hybridization experiments demonstrated that the abnormality in the Hb P Congo was not in the α chain5. As the genes for the βA and βS chains are alleles at a single locus it is impossible for one individual to inherit Hbs A, S and P unless the gene for the non-α chain of Hb P is at a separate locus. A new genetic locus for a hybrid β-δ chain might be generated as shown in Fig. 1, by unequal but homologous crossing over of the genes for the δ and β chains6. One of the products of a crossing over would be a hybrid δ-β gene which would give rise to Hb Lepore. The other product would contain the genes for the δ and β chain and for a hybrid β-δ chain. The existence of homozygotes for Hb Lepore7 who make no Hb A or A2 suggests that the δ and β genes are in the order shown in Fig. 1. If a homozygote for the β-δ gene existed he would be expected to make Hb A and A2 as well.

This is a preview of subscription content, access via your institution

Access options

References

  1. Dherte, P., Lehmann, H., and Vandepitte, J., Nature, 184, 1133 (1959).

    Article  CAS  PubMed  Google Scholar 

  2. Lambotte-Legrand, J. D. C., Ager, J. A. M., and Lehmann, H., J. Rev. Haemat., 15, 10 (1960).

    CAS  Google Scholar 

  3. Schneider, R. G., Alperin, J. B., Brimhall, B., and Jones, R. T., J. Lab. Clin. Med., 73, 616 (1969).

    CAS  PubMed  Google Scholar 

  4. Lehmann, H., and Charlesworth, D., Biochem. J., 119, 42P (1970).

    Article  Google Scholar 

  5. Gammack, D. B., Huehns, E. R., Lehmann, H., and Shooter, E. M., Acta Genet. Statist. Med., 11, 1 (1961).

    CAS  PubMed  Google Scholar 

  6. Smithies, O., Cold Spring Harbor Symp. Quant. Biol., 29, 309 (1964).

    Article  CAS  PubMed  Google Scholar 

  7. Fessas, Ph., Stamatoyannopoulos, G., and Karaklis, A., Blood, 19, 1 (1962).

    CAS  PubMed  Google Scholar 

  8. Barnabas, J., and Muller, C. J., Nature, 194, 931 (1962).

    Article  CAS  Google Scholar 

  9. Curtain, C. C., Australian J. Exp. Biol., 42, 89 (1964).

    Article  CAS  Google Scholar 

  10. Ostertag, W., and Smith, E. W., European J. Biochem., 10, 371 (1969).

    Article  CAS  Google Scholar 

  11. Baglioni, C., and Ventruto, V., European J. Biochem., 5, 29 (1969).

    Article  Google Scholar 

  12. Labie, D., Schroeder, W. A., and Huisman, T. H. J., Biochim. Biophys. Acta, 127, 428 (1966).

    Article  CAS  PubMed  Google Scholar 

  13. Huisman, T. M. J., and Dozy, A. M., J. Chromatog., 19, 160 (1965).

    Article  CAS  Google Scholar 

  14. Yanase, T., Hamada, M., Seita, M., Ohya, I., Ohta, Y., Imamura, T., Fujimura, T., Kawasaki, K., and Yamaoka, K., Jap. J. Hum. Genetics, 13, 40 (1968).

    CAS  Google Scholar 

  15. Ohta, Y., Yamaoka, K., Sumida, I., and Yanase, T., Nature New Biology, 234, 218 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Imai, K., Morimoto, H., Kotani, M., Watari, M., Hirata, W., and Kuroda, M., Biochim. Biophys. Acta, 200, 189 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Clegg, J. B., Naughton, M. A., and Weatherall, D. J., J. Mol. Biol.,19, 91 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Kilmartin, J. V., and Rossi-Bernardi, L., Biochem. J., 124, 31 (1970).

    Article  Google Scholar 

  19. Winslow, R. M., and Ingram, V. M., J. Biol. Chem., 241, 1144 (1966).

    CAS  PubMed  Google Scholar 

  20. White, J. M., Lang, A., Lorkin, P. A., Lehmann, H., and Reeve, J., Nature New Biology, 235, 208 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. Beale, D., Biochem. J., 103, 129 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BADR, F., LORKIN, P. & LEHMANN, H. Haemoglobin P-Nilotic containing a β-δ Chain. Nature New Biology 242, 107–110 (1973). https://doi.org/10.1038/newbio242107a0

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1038/newbio242107a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing