Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Reversible Abolition of Normal Morphology in Hydra

Abstract

THE experimental evidence concerning head and foot regeneration in hydra has been interpreted most consistently in terms of one or more gradients of unknown biochemical nature running along the length of the animal1–5. There is also a considerable literature implicating underlying variations in “metabolic activity” in the setting up of gradients in hydra and other developing systems6–9, but the relationship of this activity to problems of pattern formation in animal development is ill defined, because it is difficult to explain how quantitative differences in metabolic state (characterized biochemically) could be reliably distributed and translated into the qualitative differences of various cell types (see refs 10–12 for models for this process). Hydra might be particularly suited to studies in this area, because its axial pattern is simple and relatively well characterized5,13, and regeneration and pattern regulation do not appear to require cell division13. The changing fates of cells within a single, organized population could ideally be followed under defined environmental influences on the metabolism.

This is a preview of subscription content, access via your institution

Access options

References

  1. Tardent, P. E., Growth Symp., 18, 21 (1960).

    Google Scholar 

  2. Webster, G., and Wolpert, L., J. Embryol. Exp. Morphol., 16, 91 (1966).

    CAS  PubMed  Google Scholar 

  3. Webster, G., J. Embryol. Exp. Morphol., 16, 105 (1966).

    CAS  PubMed  Google Scholar 

  4. MacWilliams, H. K., Kafatos, F. C., and Bossert, W. H., Develop. Biol., 23, 380 (1970).

    Article  CAS  Google Scholar 

  5. Webster, G., Biol. Rev., 46, 1 (1971).

    Article  Google Scholar 

  6. Child, C. M., Patterns and Problems of Development (University of Chicago Press, Chicago, 1941).

    Book  Google Scholar 

  7. Rose, S. M., and Rose, F. C., Physiol. Zool., 14, 328 (1941).

    Article  Google Scholar 

  8. Gustafson, T., and Lenicque, P., Exp. Cell. Res., 3, 251 (1952).

    Article  CAS  Google Scholar 

  9. Backstrom, S., Reducing Agents and Activities in Sea Urchin Development (Almqvist and Wiksells, Uppsala, 1959).

    Google Scholar 

  10. Spiegelman, S., Q. Rev. Biol., 20, 121 (1945).

    Article  Google Scholar 

  11. Rose, S. M., Amer. Nat., 86, 337 (1952).

    Article  Google Scholar 

  12. Goodwin, B. C., and Cohen, M. H., J. Theoret. Biol., 25, 49 (1969).

    Article  CAS  Google Scholar 

  13. Wolpert, L., Hicklin, J., and Hornbruch, A., Symp. Soc. Exp. Biol., 25, 391 (1971).

    CAS  PubMed  Google Scholar 

  14. Wolpert, L., Current Topics in Develop. Biol., 6, 183 (1971).

    Article  CAS  Google Scholar 

  15. Muscatine, L., in Biology of the Hydra (edit. by Loorais, W. F., and Lenhoff, H. M.), 255 (University of Miami Press, Coral Gables, Florida, 1961).

    Google Scholar 

  16. Hicklin, J., Hornbruch, A., and Wolpert, L., Nature, 221, 1268 (1969).

    Article  CAS  Google Scholar 

  17. Corff, S. C., and Burnett, A. L., J. Embryol. Exp. Morphol., 21, 417 (1969).

    CAS  PubMed  Google Scholar 

  18. Waddington, C. H., in Major Problems in Developmental Biology (edit. by Locke, M.), 105 (Academic Press, New York, 1966).

    Book  Google Scholar 

  19. Clarkson, S., J. Embryol. Exp. Morphol., 21, 55 (1969).

    CAS  PubMed  Google Scholar 

  20. Weiss, P. A., Principles of Development (Henry Holt, New York, 1939).

    Google Scholar 

  21. Newman, S. A., in Cell Differentiation (edit. by Harris, R., and Viza, D.), 300 (Munksgaard, Copenhagen, 1972).

    Google Scholar 

  22. Browne, E. N., J. Exp. Zool., 7, 1 (1909).

    Article  Google Scholar 

  23. Webster, G., J. Embryol. Exp. Morph., 18, 181 (1967).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NEWMAN, S. Reversible Abolition of Normal Morphology in Hydra. Nature New Biology 244, 126–128 (1973). https://doi.org/10.1038/newbio244126a0

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1038/newbio244126a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing