Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum

Abstract

We sequenced and annotated the genomes of four P. vivax strains collected from disparate geographic locations, tripling the number of genome sequences available for this understudied parasite and providing the first genome-wide perspective of global variability in this species. We observe approximately twice as much SNP diversity among these isolates as we do among a comparable collection of isolates of P. falciparum, a malaria-causing parasite that results in higher mortality. This indicates a distinct history of global colonization and/or a more stable demographic history for P. vivax relative to P. falciparum, which is thought to have undergone a recent population bottleneck. The SNP diversity, as well as additional microsatellite and gene family variability, suggests a capacity for greater functional variation in the global population of P. vivax. These findings warrant a deeper survey of variation in P. vivax to equip disease interventions targeting the distinctive biology of this neglected but major pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disparity in SNP and microsatellite diversity between P. vivax and P. falciparum.
Figure 2: Neighbor-joining phylograms of P. vivax and P. falciparum constructed from presumably neutral SNPs occurring in fourfold-degenerate coding sites.
Figure 3: Diversity of P. vivax gene families.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Sequence Read Archive

References

  1. Guerra, C.A. et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl. Trop. Dis. 4, e774 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dobson, M.J. Malaria in England: a geographical and historical perspective. Parassitologia 36, 35–60 (1994).

    CAS  PubMed  Google Scholar 

  3. Price, R.N., Douglas, N.M. & Anstey, N.M. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr. Opin. Infect. Dis. 22, 430–435 (2009).

    Article  PubMed  Google Scholar 

  4. Carlton, J.M., Sina, B.J. & Adams, J.H. Why is Plasmodium vivax a neglected tropical disease? PLoS Negl. Trop. Dis. 5, e1160 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Winzeler, E.A. Malaria research in the post-genomic era. Nature 455, 751–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carlton, J.M. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455, 757–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dharia, N.V. et al. Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes. Proc. Natl. Acad. Sci. USA 107, 20045–20050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Feng, X. et al. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc. Natl. Acad. Sci. USA 100, 8502–8507 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mu, J. et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol. Biol. Evol. 22, 1686–1693 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gemayel, R., Vinces, M.D., Legendre, M. & Verstrepen, K.J. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44, 445–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Joy, D.A., Mu, J., Jiang, H. & Su, X. Genetic diversity and population history of Plasmodium falciparum and Plasmodium vivax. Parassitologia 48, 561–566 (2006).

    CAS  PubMed  Google Scholar 

  14. Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 803–808 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paget-McNicol, S. & Saul, A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology 122, 497–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Cornejo, O.E. & Escalante, A.A. The origin and age of Plasmodium vivax. Trends Parasitol. 22, 558–563 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conway, D.J. et al. Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol. Biochem. Parasitol. 111, 163–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Carter, R. Speculations on the origins of Plasmodium vivax malaria. Trends Parasitol. 19, 214–219 (2003).

    Article  PubMed  Google Scholar 

  19. Thera, M.A. et al. A field trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365, 1004–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernandez-Becerra, C. et al. Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends Parasitol. 25, 44–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Bozdech, Z. et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc. Natl. Acad. Sci. USA 105, 16290–16295 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garnham, P.C. et al. A strain of Plasmodium vivax characterized by prolonged incubation: morphological and biological characteristics. Bull. World Health Organ. 52, 21–32 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nayar, J.K. et al. Studies on a primaquine-tolerant strain of Plasmodium vivax from Brazil in Aotus and Saimiri monkeys. J. Parasitol. 83, 739–745 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Bhasin, V.K. & Trager, W. Gametocyte-forming and non-gametocyte–forming clones of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 33, 534–537 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan, J.S. et al. Adaptation of a strain of Plasmodium vivax from India to New World monkeys, chimpanzees, and anopheline mosquitoes. J. Parasitol. 87, 1398–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Collins, W.E. et al. Studies on the North Korean strain of Plasmodium vivax in Aotus monkeys and different anophelines. J. Parasitol. 71, 20–27 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Wellems, T.E. et al. Chromosome size variation occurs in cloned Plasmodium falciparum on in vitro cultivation. Rev. Bras. Genet. 11, 813–825 (1988).

    Google Scholar 

  28. Collins, W.E. et al. Adaptation of a strain of Plasmodium vivax from Mauritania to New World monkeys and anopheline mosquitoes. J. Parasitol. 84, 619–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Melnikov, A. et al. Hybrid selection for sequencing pathogen genomes from clinical samples. Genome Biol. 12, R73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Griffiths-Jones, S. Annotating non-coding RNAs with Rfam. Curr. Protoc. Bioinformatics Chapter 12, Unit 12.5 (2005).

  35. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. & Borodovsky, M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18, 1979–1990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanco, E. & Abril, J.F. Computational gene annotation in new genome assemblies using GeneID. Methods Mol. Biol. 537, 243–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolpakov, R., Bana, G. & Kucherov, G. mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 31, 3672–3678 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell, B., Suwanarusk, R. & Lek-Uthai, U. Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol. 22, 399–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ina, Y. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J. Mol. Evol. 40, 190–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded, in whole or in part, by federal funds from the US National Institute of Allergy and Infectious Diseases (NIAID), the US National Institutes of Health (NIH) and the US Department of Health and Human Services, under contracts HHSN266200400001C and HHSN2722009000018C. We gratefully acknowledge the Indian Council of Medical Research for financial support of the Malaria Parasite Bank at the National Institute of Malaria Research, New Delhi, and the NIMR Director for providing all facilities. We thank the NIAID/National Human Genome Research Institute (NHGRI) Eukaryotic Pathogens and Disease Vectors Working Group and the Broad Institute Genome Sequencing Platform for significant contributions to this project. K.G. and L.Y. are supported by a Global Health Program grant from the Bill and Melinda Gates Foundation. A.A.E. is supported by a grant from the NIH (RO1GM084320), and J.M.C. and P.L.S. are supported by grant U19AI089676, an NIAID International Center of Excellence for Malaria Research. The content is soley the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. provided P. vivax strains, and A.R.A. and A.P.D. provided Indian P. falciparum material. S.M.S., S.S. and S.Y. performed genome assembly. S.G., J.M.G. and Q.Z. performed genome annotation. K.G., R.H.Y.J., L.Y. and D.E.N. performed analyses. S.B.C. performed project management. P.L.S. undertook experimental validation. D.E.N., A.A.E., B.W.B. and J.M.C. directed the analyses. D.E.N., A.A.E., J.W.B. and J.M.C. wrote the manuscript.

Corresponding author

Correspondence to Jane M Carlton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary Information for

The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum

41588_2012_BFng2373_MOESM19_ESM.xls

Comparison of nonsynomymous:synonymous diversity ratio (πN/πS) in P. vivax and P. falciparum orthologs (.xlsx file) (XLS 136 kb)

41588_2012_BFng2373_MOESM20_ESM.xls

Gene categories differentially enriched (Z > 2) for functional diversity (πN/πS) in P. vivax or P. falciparum (.xlsx file) (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neafsey, D., Galinsky, K., Jiang, R. et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet 44, 1046–1050 (2012). https://doi.org/10.1038/ng.2373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng.2373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing