Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clonal evolution of glioblastoma under therapy

Abstract

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. To better understand how GBM evolves, we analyzed longitudinal genomic and transcriptomic data from 114 patients. The analysis shows a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern, together with estimates of evolutionary rate, suggests that relapse-associated clones typically existed years before diagnosis. Fifteen percent of tumors present hypermutation at relapse in highly expressed genes, with a clear mutational signature. We find that 11% of recurrence tumors harbor mutations in LTBP4, which encodes a protein binding to TGF-β. Silencing LTBP4 in GBM cells leads to suppression of TGF-β activity and decreased cell proliferation. In recurrent GBM with wild-type IDH1, high LTBP4 expression is associated with worse prognosis, highlighting the TGF-β pathway as a potential therapeutic target in GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational landscape of recurrent glioblastoma.
Figure 2: Temozolomide-related hypermutation.
Figure 3: Mathematical model of tumor evolution.
Figure 4: Clonal mutation replacement in key driver genes.
Figure 5: Expression-based subtyping of recurrent GBM.
Figure 6: LTBP4 and the TGF-β signaling pathway in recurrent GBM.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Ricard, D. et al. Primary brain tumours in adults. Lancet 379, 1984–1996 (2012).

    Article  PubMed  Google Scholar 

  2. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brennan, C.W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mazor, T. et al. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28, 307–317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, J. et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 28, 318–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, H. et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 25, 316–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Nordling, C.O. A new theory on cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl. Acad. Sci. USA 110, 4009–4014 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gill, B.J. et al. MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma. Proc. Natl. Acad. Sci. USA 111, 12550–12555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson, B.E. et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat. Genet. 47, 458–468 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Trifonov, V., Pasqualucci, L., Tiacci, E., Falini, B. & Rabadan, R. SAVI: a statistical algorithm for variant frequency identification. BMC Syst. Biol. 7 (suppl. 2), S2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Melamed, R.D., Wang, J., Iavarone, A. & Rabadan, R. An information theoretic method to identify combinations of genomic alterations that promote glioblastoma. J. Mol. Cell Biol. 7, 203–213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Stieglitz, E. et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 47, 1326–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yip, S. et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res. 15, 4622–4629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cahill, D.P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  24. Miyazono, K., Olofsson, A., Colosetti, P. & Heldin, C.H. A role of the latent TGF-β1–binding protein in the assembly and secretion of TGF-β1. EMBO J. 10, 1091–1101 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sterner-Kock, A. et al. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 16, 2264–2273 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Trifonov, V., Pasqualucci, L., Dalla Favera, R. & Rabadan, R. MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples. BMC Syst. Biol. 7, 25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Stefano, A.L. et al. Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin. Cancer Res. 21, 3307–3317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hegi, M.E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakellarios Zairis, H.K., Blumberg, A. & Rabadan, R. Moduli spaces of phylogenetic trees describing tumor evolutionary patterns. Lect. Notes Computer Sci. 8609, 528–839 (2014).

    Article  Google Scholar 

  34. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Yates, L.R. & Campbell, P.J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J. et al. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. eLife 3, e02869 (2014).

    Article  PubMed Central  Google Scholar 

  37. Carter, S.L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuan, C.T., Wikstrand, C.J. & Bigner, D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer 8, 83–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Torres-García, W. et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224–2226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  42. Verhaak, R.G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anido, J. et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Han, J., Alvarez-Breckenridge, C.A., Wang, Q.E. & Yu, J. TGF-β signaling and its targeting for glioma treatment. Am. J. Cancer Res. 5, 945–955 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Joseph, J.V., Balasubramaniyan, V., Walenkamp, A. & Kruyt, F.A. TGF-β as a therapeutic target in high grade gliomas—promises and challenges. Biochem. Pharmacol. 85, 478–485 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Kaminska, B., Kocyk, M. & Kijewska, M. TGF β signaling and its role in glioma pathogenesis. Adv. Exp. Med. Biol. 986, 171–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Massagué, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fakhrai, H. et al. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc. Natl. Acad. Sci. USA 93, 2909–2914 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Khalili, J.S., Hanson, R.W. & Szallasi, Z. In silico prediction of tumor antigens derived from functional missense mutations of the cancer gene census. OncoImmunology 1, 1281–1289 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  PubMed  Google Scholar 

  55. Magi, A. et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 14, R120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Iyer, M.K., Chinnaiyan, A.M. & Maher, C.A. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27, 2903–2904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abate, F. et al. Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer. BMC Syst. Biol. 8, 97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niola, F. et al. Mesenchymal high-grade glioma is maintained by the ID–RAP1 axis. J. Clin. Invest. 123, 405–417 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Carro, M.S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat. Cell Biol. 10, 643–653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.R. acknowledges funding from the NIH (U54 CA193313, R01 CA185486, and R01 CA179044). J.W. is supported by a Precision Medicine Fellowship (UL1 TR000040). E.L. is supported by the Cancer Biology Training Program (T32 CA09503). D.I.S.R. is supported by the US National Library of Medicine (T15 LM007079). S.Z. is supported by a Personalized Medicine Fellowship (TL1 TR000082). This work is also supported by NIH grants to A.L. (R01 CA101644 and R01 CA131126) and A.I. (R01 CA178546 and R01 NS061776 and a grant from the Chemotherapy Foundation). V.F. is supported by a fellowship from the American Brain Tumor Association (ABTA). G.F. is partly funded by the Italian Ministry of Health. D.-H.N. is supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HI14C3418).

Author information

Authors and Affiliations

Authors

Contributions

E.C., M.E., and G.F. started the collection of samples and prepared libraries for genomic and transcriptomic analyses. E.C., V.F., and A.L. performed LTBP4 experiments. V.F. performed Sanger validation. S.Z. and A.J.B. performed the statistical analysis of phylogenetic trees. D.-H.N. provided additional data. F.A. and S.Z. ran Pegasus analysis. Z.L. ran ssGSEA analysis. D.I.S.R. constructed the mathematical model of tumor evolution before and after treatment. R.R., J.W., E.L., and O.E. developed and carried out analysis of genomic data. A.L., R.R., and A.I. conceived the methodology. D.-H.N., J.-K.L., I.-H.L., and W.-Y.P. provided clinical and genomic information for the SMC cohort. D.-H.N. and Y.-J.S. performed the validation of MGMT fusion. R.R., A.I., and J.W. conceived the project, discussed the results and implications, and wrote the manuscript.

Corresponding authors

Correspondence to Do-Hyun Nam, Gaetano Finocchiaro, Antonio Iavarone or Raul Rabadan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Note. (PDF 20648 kb)

Supplementary Data

Sanger validation of selected mutations. (PDF 32218 kb)

Supplementary Table 1

Coverage for whole-exome sequencing. (XLSX 67 kb)

Supplementary Table 2

All somatic mutations in patients with recurrent GBM. (XLSX 5494 kb)

Supplementary Table 3

Significant regions and potential driver genes reported by GISTIC2. (XLSX 150 kb)

Supplementary Table 4

Significant driver genes predicted by MutComFocal. (XLSX 366 kb)

Supplementary Table 5

Analysis of loss of heterozygosity. (XLSX 175 kb)

Supplementary Table 6

Selected list of gene fusion candidates. (XLSX 5925 kb)

Supplementary Table 7

Tumor purity estimation from ABSOLUTE. (XLSX 59 kb)

Supplementary Table 8

Cellular frequency prediction from PyClone. (XLSX 3816 kb)

Supplementary Table 9

EGFRvIII prediction from PRADA. (XLSX 53 kb)

Supplementary Table 10

Patient clinical data. (XLSX 29 kb)

Supplementary Table 11

Primer/oligo sequences for experimental validation. (XLSX 40 kb)

Supplementary Table 12

Validation of selected mutations by CancerSCAN. (XLSX 48 kb)

Supplementary Code

Glioblastoma evolution. (TXT 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cazzato, E., Ladewig, E. et al. Clonal evolution of glioblastoma under therapy. Nat Genet 48, 768–776 (2016). https://doi.org/10.1038/ng.3590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng.3590

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer