Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genome of the cucumber, Cucumis sativus L.

Abstract

Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated genetic and physical map of cucumber.
Figure 2: Comparison of cucumber genome with other sequenced plant genomes.
Figure 3: Comparative genomic analysis of cucurbits.
Figure 4: Lineage-specific expansion of the LOX gene family in the five sequenced dicot genomes and rice genome.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Tanurdzic, M. & Banks, J.A. Sex-determining mechanisms in land plants. Plant Cell 16, S61–S71 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lough, T.J. & Lucas, W.J. Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Xoconostle-Cázares, B. et al. Plant paralog to viral movement protein that potentiates rransport of mRNA into the phloem. Science 283, 94–98 (1999).

    Article  PubMed  Google Scholar 

  4. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  5. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).

    Article  Google Scholar 

  6. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tuskan, G.A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Staub, J.E., Serquen, F.C., Horejsi, T. & Chen, J.-f. Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm1. Genet. Resour. Crop Evol. 46, 297–310 (1999).

    Article  Google Scholar 

  14. Arumuganathan, K. & Earle, E. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).

    Article  CAS  Google Scholar 

  15. Han, Y.H. et al. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet. Genome Res. 122, 80–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ren, Y. et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4, e5795 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bowers, J.E., Chapman, B.A., Rong, J. & Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, J. et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, e38 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fernandez-Silva, I. et al. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor. Appl. Genet. 118, 139 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer, H., Heibl, C. & Renner, S.S. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276, 843–851 (2009).

    Article  PubMed  Google Scholar 

  21. Liavonchanka, A. & Feussner, I. Lipoxygenases: occurrence, functions and catalysis. J. Plant Physiol. 163, 348–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Schwab, W., Davidovich-Rikanati, R. & Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 54, 712–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Buescher, R.H. & Buescher, R.W. Production and stability of (E, Z)-2, 6-nonadienal, the major flavor volatile of cucumbers. J. Food Sci. 66, 357–361 (2001).

    Article  CAS  Google Scholar 

  24. Cho, M.J., Buescher, R.W., Johnson, M. & Janes, M. Inactivation of pathogenic bacteria by cucumber volatiles (E,Z)-2,6-nonadienal and (E)-2-nonenal. J. Food Prot. 67, 1014–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Matsui, K. et al. Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett. 481, 183–188 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nieto, C. et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48, 452–462 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wai, T. & Grumet, R. Inheritance of resistance to watermelon mosaic virus in the cucumber line TMG-1: tissue-specific expression and relationship to zucchini yellow mosaic virus resistance. Theor. Appl. Genet. 91, 699–706 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Taler, D., Galperin, M., Benjamin, I., Cohen, Y. & Kenigsbuch, D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16, 172–184 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balkema-Boomstra, A.G. et al. Role of cucurbitacin C in resistance to spider mite Tetranychus urticae in cucumber Cucumis sativus L. J. Chem. Ecol. 29, 225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Da Costa, C.P. & Jones, C.M. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172, 1145–1146 (1971).

    Article  CAS  PubMed  Google Scholar 

  31. Phillips, D.R., Rasbery, J.M., Bartel, B. & Matsuda, S.P. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305–314 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shibuya, M., Adachi, S. & Ebizuka, Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60, 6995–7003 (2004).

    Article  CAS  Google Scholar 

  33. Field, B. & Osbourn, A.E. Metabolic diversification–independent assembly of operon-like gene clusters in different plants. Science 320, 543–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Rudich, J., Halevy, A.H. & Kedar, N. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49, 998–999 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pirrung, M.C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 32, 711–718 (1999).

    Article  CAS  Google Scholar 

  36. Stepanova, A.N. & Alonso, J.M. Ethylene signaling pathway. Sci. STKE 2005, cm3 (2005).

    PubMed  Google Scholar 

  37. Boualem, A. et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321, 836–838 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z. et al. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182, 1381–1385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamagami, T. et al. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102–49112 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi, H. & Jaffe, M.J. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors. Phyton (Buenos Aires) 44, 81–86 (1984).

    CAS  Google Scholar 

  41. DeLong, A., Calderon-Urrea, A. & Dellaporta, S.L. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757–768 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Darwin, C.R. The Movements and Habits of Climbing Plants (Murray, London, 1875).

  43. Boss, P.K. & Thomas, M.R. Association of dwarfism and floral induction with a grape /'green revolution/' mutation. Nature 416, 847–850 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Galun, E. The cucumber tendril—a new test organ for gibberellic acid. Cell. Mol. Life Sci. 15, 184–185 (1959).

    Article  CAS  Google Scholar 

  45. Lange, T. Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6553–6558 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Braam, J. In touch: plant responses to mechanical stimuli. New Phytol. 165, 373–389 (2005).

    Article  PubMed  Google Scholar 

  47. Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 407, 321–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, M.-K., Lee, Y.-J., Lough, T.J., Phinney, B.S. & Lucas, W.J. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell. Proteomics 8, 343–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Rensing, S.A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Aki, T., Shigyo, M., Nakano, R., Yoneyama, T. & Yanagisawa, S. Nano scale proteomics revealed the presence of regulatory proteins including rhree FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 49, 767–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. & Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Dinant, S. et al. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 131, 114–128 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pélissier, H.C., Peters, W.S., Collier, R., van Bel, A.J. & Knoblauch, M. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol. 49, 1699–1710 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, S.J. et al. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations. Phytochemistry 68, 1957–1974 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, J. et al. RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res. 12, 824–831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, R. et al. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLOS Comput. Biol. 1, e43 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edgar, R.C. & Myers, E.W. PILER: identification and classification of genomic repeats. Bioinformatics 21 Suppl 1, i152–i158 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Price, A.L., Jones, N.C. & Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1, i351–i358 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Elsik, C.G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Campbell, M.A., Haas, B.J., Hamilton, J.P., Mount, S.M. & Buell, C.R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li, H. et al. Test data sets and evaluation of gene prediction programs on the rice genome. J Comp Sci Tech 20, 446–453 (2005).

    Article  Google Scholar 

  63. Majoros, W.H., Pertea, M. & Salzberg, S.L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19 Suppl 2, ii215–ii225 (2003).

    Article  PubMed  Google Scholar 

  66. Salamov, A.A. & Solovyev, V.V. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 10, 516–522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Childs, K.L. et al. The TIGR Plant Transcript Assemblies database. Nucleic Acids Res. 35, D846–D851 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, X., Adams, M.D., Zhou, H. & Kerlavage, A.R. A tool for analyzing and annotating genomic sequences. Genomics 46, 37–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lowe, T.M. & Eddy, S.R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Crepet, W.L., Nixon, K.C. & Gandolfo, M.A. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am. J. Botany 91, 1666–1682 (2004).

    Article  Google Scholar 

  78. Wikström, N., Savolainen, V. & Chase, M.W. Evolution of the angiosperms: calibrating the family tree. Proc. Biol. Sci. 268, 2211–2220 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Goodman for assistance in editing the manuscript and R. Quatrano, L. Kochian, L. Comai, V. Sundaresan, S. Kamoun and S. Renner for critical readings of the manuscript. This work was funded by the Chinese Ministry of Agriculture (948 program), Ministry of Science and Technology (2006DFA32140, 2007CB815701, 2007CB815703 and 2007CB815705) and Ministry of Finance (1251610601001); the National Natural Science Foundation of China (30871707 and 30725008); the Chinese Academy of Agricultural Sciences (seed grant to S.H.); the Chinese Academy of Science (GJHZ0701-6 and KSCX2-YWN-023); the US Department of Agriculture (National Research Initiative grant 2006-35304-17346 to W.J.L.); the National Science Foundation (grant IOS-07-15513 to W.J.L.); and the Korea Science and Engineering Foundation–Ministry of Education, Science and Technology (WCU R33-10002 and BK21 grants to J.-Y.K.). WKC was partly supported by grants from the Environmental Biotechnology National Core Research Center (R15-2003-012-01003-0) and National Research Laboratory (2009-0066339). This work was also supported by the Shenzhen Municipal and Yantian District Governments and the Society of Entrepreneurs & Ecology. D. Qu and Z. Fang of the Chinese Academy of Agricultural Sciences provided management support for this work.

Author information

Authors and Affiliations

Authors

Contributions

S.H., Y.D., Jun Wang and Songgang Li managed the project. S.H., Z.Z., W.J.L., X.G. and R.L. designed the analyses. X.G., H.M., L.L., Yuanyuan Ren, G.T., Y. Lu, Z.X., J.C., A., Z.W., J. Zhang, H. Liang, X.R., M.J., Hailong Yang, R.C., Shifang Liu and X.Z. conducted DNA preparation and sequencing. X.W., B.X., K.L., W.J., Guangcun Li, Z.F., J.S., A.K., E.A.G.v.d.V. and Y.X. contributed new reagents and analytic tools. S.H., Z.Z., W.J.L., X.G., R.L., X.W., B.X., K.L., W.J., J.H., Z.J., Yi Ren, Ying Li, X.L., S.W., Q.S., W.K.C., J.-Y.K., K.H.-U., H.M., Z.C., S.Z., J. Wu, Y.Y., H.K., Y.W., J.G., Y.H., M.L., B. Zhao, Shiqiang Liu, W.F., P.N., H. Zhu, Jun Li, J.R., W.Q., M. Wang, Q.H., B.L., Q.C., Y.B., Z.S., M. Wen, G.Z., Z.Y., Jianwen Li, L.M., H. Liu., Y. Zhou, J. Zhao, X.F., Guoqing Li, L.F., Yingrui Li, D.L., Hancheng Zheng and Shaochuan Li conducted the data analyses. S.H., R.L., Z.Z. and W.J.L. wrote the paper. Y.D., R.S., B. Zhang., S.J., G.Y., S.Y., Hongkun Zheng, Y. Zhang, N.Q., Z.L., L.B., K.K., Huanming Yang and Jian Wang revised the paper.

Corresponding authors

Correspondence to Sanwen Huang, Jun Wang, Yongchen Du or Songgang Li.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20 and Supplementary Tables 1–17, 20. (PDF 2463 kb)

Supplementary Table 18

Phylogenetic relationships of GH20-oxidase genes in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr), grapevine (GSVIVP), rice (BGIOSGA), pumpkin and watermelon. (XLS 440 kb)

Supplementary Table 19

Phylogenetic relationships of expansins in cucumber (Csa), Arabidopsis (At), papaya (evm.Tu), poplar (Poptr) and grapevine (GSVIVP). (XLS 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Li, R., Zhang, Z. et al. The genome of the cucumber, Cucumis sativus L.. Nat Genet 41, 1275–1281 (2009). https://doi.org/10.1038/ng.475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng.475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing