Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature genetics
  3. articles
  4. article
Dense Alu clustering and a potential new member of the NFκB family within a 90 kilobase HLA Class III segment
Download PDF
  • Article
  • Published: 01 February 1993

Dense Alu clustering and a potential new member of the NFκB family within a 90 kilobase HLA Class III segment

  • François J.M. Iris1,
  • Lydie Bougueleret1,
  • Sylvie Prieur1,
  • Dominique Caterina1,
  • Gwenaël Primas1,
  • Virginie Perrot1,
  • Jerzy Jurka2,
  • Patricia Rodriguez-Tome1,
  • Jean Michel Claverie3,
  • Jean Dausset1 &
  • …
  • Daniel Cohen1 

Nature Genetics volume 3, pages 137–145 (1993)Cite this article

  • 159 Accesses

  • 106 Citations

  • 9 Altmetric

  • Metrics details

Abstract

We have conducted a detailed structural analysis of 90 kilobases (kb) of the HLA Class III region from the Bat2 gene at the centromeric end to 23 kb beyond TNF. A single contig of 80 kb was sequenced entirely with a group of four smaller contigs covering 10 kb being only partly sequenced. This region contains four known genes and a novel telomeric potential coding region. The genes are bracketed by long, dense clusters of Alu repeats belonging to all the major families. At least six new families of MER repeats and one pseudogene are intercalated within and between the Alu clusters. The most telomeric 3.8 kb contains three potential exons, one of which bears strong homology to the ankyrin domain of the DNA binding factors NFκB and IκB.

You have full access to this article via your institution.

Download PDF

Similar content being viewed by others

Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia

Article Open access 08 December 2023

Stepwise neofunctionalization of the NF-κB family member Rel during vertebrate evolution

Article Open access 30 April 2025

The genomic landscape of pediatric acute lymphoblastic leukemia

Article 01 September 2022

Article PDF

References

  1. Batchelor, J.R. & McMichael, A.J. Progress in understanding HLA and disease associations. Br. Med. Bull. 43, 156–183 (1987).

    Article  CAS  Google Scholar 

  2. Crumpton, M.J. HLA in medicine: Introduction. Br. Med. Bull. 43, i–vi (1987).

    Article  Google Scholar 

  3. Sargent, C.A., Dunham, I. & Campbell, R.D. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III. EMBO J. 8, 2305–2312 (1989).

    Article  CAS  Google Scholar 

  4. Kendall, E., Sargent, C.A. & Campbell, R.D. Human major histocompatibility complex contains a new cluster of genes between the HLA-D and complement C4 loci. Nucl. Acids Res. 24, 7251–7257 (1990).

    Article  Google Scholar 

  5. Milner, C.M. & Campbell, R.D. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242–251 (1990).

    Article  CAS  Google Scholar 

  6. Benjamin, R. & Parham, P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol. Today 11, 137–142 (1990).

    Article  CAS  Google Scholar 

  7. Jacob, C.O. et al. Heritable MHC class II-associated differences in production of tumor necrosis factor a: Relevance to genetic predisposition to systemic lupus herytematosus. Proc. natn. Acad. Sci. U.S.A. 87, 1233–1237 (1990).

    Article  CAS  Google Scholar 

  8. Rubinstein, P. HLA and IDDM: Facts and speculations on the disease gene and its mode of inhertance. Hum. Immunol. 30, 270–277 (1991).

    Article  CAS  Google Scholar 

  9. Nepom, G.T. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes 39, 1153–1157 (1990).

    Article  CAS  Google Scholar 

  10. Raum, D., Alper, C.A. & Stein, R. Genetic markers for insulin dependent diabetes mellitus. Lancet 2, 1208–1213 (1979).

    Article  Google Scholar 

  11. Spies, T., Bresnahan, M. & Strominger, J.L. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc. natn. Acad. Sci. U.S.A. 86, 8955–8958 (1989).

    Article  CAS  Google Scholar 

  12. Banerji, J., Sands, J., Strominger, J.L. & Spies, T. A gene pairfrom the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc. natn. Acad. Sci. U.S.A. 87, 2374–2378 (1990).

    Article  CAS  Google Scholar 

  13. French, M.A.H. & Dawkins, R.L. Central MHC genes, IgA deficiency and autoimmune disease. Immunol. Today 11, 271–273 (1990).

    Article  CAS  Google Scholar 

  14. Nedospasov, S.A. et al. Tandem arrangement of genes coding for tumor necrosis factor (TNFa) and lymphotoxin (TNFb) in the human genome. Cold Spring Harb. Symp. Quant. Biol. 51, 611–624 (1986).

    Article  CAS  Google Scholar 

  15. Jurka, J. & Milosavljevic, A. Reconstruction and analysis of human Alu genes. J. molec. Evol. 32, 105–121 (1991).

    Article  CAS  Google Scholar 

  16. Kerian, K. et al. The DNA binding subunit of NFκB is identical to factor KBF1 and homologous to the rel oncogene product: Cell 62, 1007–1018 (1990).

    Article  Google Scholar 

  17. Hasskill, S. et al. Characterisation of an immediate-early gene induced in adherent monocytes that encodes IkB-like activity. Cell 65, 1281–1289 (1991).

    Article  Google Scholar 

  18. Yang, S.Y. Assignment of HLA-A and HLA-B antigens for the reference panel of B-lymphoblastoid cell lines determined by one-dimentional isoelectric focusing (1D-IEF) gel electrophoresis. In Immunobiology of HLA Vol. 1 (ed. Dupont, B.) 12, 14, 16, 43–47 & 1079 (Springer, New York, 1987).

    Google Scholar 

  19. Deininger, P.L. Random subcloning of sonicated DNA: Application to shotgun DNA sequence analysis. Anal. Biochem. 129, 216–223 (1983).

    Article  CAS  Google Scholar 

  20. Dear, S. & Staden, R. A sequence assembly and editing program for efficient management of large projects. Nucl. Acids Res. 14, 3907–3911 (1991).

    Article  Google Scholar 

  21. Pearson, R.W. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  CAS  Google Scholar 

  22. Karlin, S. & Altschul, S.T. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. natn. Acad. Sci. U.S.A. 87, 2264–2268 (1990).

    Article  CAS  Google Scholar 

  23. Claverie, J-M. & Bougueleret, L. Heuristic informational analysis of sequences. Nucl. Acids Res. 14, 179–196 (1986).

    Article  CAS  Google Scholar 

  24. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA by a multiple sensor neural network approach. Proc. natn. Acad. Sci. U.S.A. 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  25. Tsuge, I., Shen, F.W., Steinmetz, M. & Boyse, E.A. A gene in the H-2S: H-2D interval in the major histocompatibility complex which is transcribed in B cells and macrophages. Immunogenetics 26, 378–380 (1987).

    Article  CAS  Google Scholar 

  26. Degen, S.J. & Davies, E.W. Nucleotide sequence of the gene for human prothrombin. Biochemistry 26, 6165–6177 (1987).

    Article  CAS  Google Scholar 

  27. Liew, C.C. et al. Complete sequence organisation of the human cardiac beta-myosin heavy chain gene. Nucl. Acids Res. 18, 3647–3651 (1990).

    Article  CAS  Google Scholar 

  28. Jurka, J. & Zuckerkandl, E. Free left arms as precursor molecules in the evolution of Alu sequences. J. molec. Evol. 33, 49–56 (1991).

    Article  CAS  Google Scholar 

  29. Jurka, J. & Smith, T. A fundamental division in the Alu family of repeated sequences. Proc. natn. Acad. Sci. U.S.A. 85, 4775–4778 (1988).

    Article  CAS  Google Scholar 

  30. Kaplan, D.J., Jurka, J., Solus, J.F. & Duncan, C.H. Medium reiteration repetitive sequences in the human genome. Nucl. Acids Res. 19, 4731–47398 (1991).

    Article  CAS  Google Scholar 

  31. Li, Z., Lilienbaum, A, Butler-Brown, G. & Paulin, D. Human desmin-coding gene: complete nucleotide sequence, characterisation and regulation of expression during myogenesis and development. Gene 78, 243–254 (1989).

    Article  CAS  Google Scholar 

  32. Koller, M., Baumer, A. & Strehler, E.E. Characterisation of two novel human retropseudogenes related to the calmodulin-encoding gene Cam II. Gene 97, 245–251 (1991).

    Article  CAS  Google Scholar 

  33. Hourcade, D., Meisner, D.R., Bee, C., Zeldes, W. & Atkinson, J.P. Duplication and divergence of the amino terminal coding region of the complement receptor 1 (CR1) gene: an example of concerted (horizontal) evolution within a gene. J. biol. Chem. 265, 974–980 (1990).

    CAS  PubMed  Google Scholar 

  34. Ma, T.S. et al. Serial Alu sequence transposition interrupting a human β-creatine kinase pseudogene. Genomics 10, 390–399 (1991).

    Article  CAS  Google Scholar 

  35. Shipp, M.A. et al. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II intergral membrane protein. Proc. natn. Acad. Sci. U.S.A. 85, 4819–4823 (1988).

    Article  CAS  Google Scholar 

  36. Wang, A.M. & Desnick, R.J. Structural organisation and complete sequence of the human α-N-acetylgalactosaminidase gene: homology with the a-galactosidase A gene provides evidence for evolution from a common ancestral gene. Genomics 10, 133–142 (1991).

    Article  CAS  Google Scholar 

  37. Toda, K. et al. Structural and functional characterisation of human aromatase P-450 gene. Eur. J. Biochem. 193, 559–565 (1990).

    Article  CAS  Google Scholar 

  38. The, V.L. et al. Structure of two in tendem human estardiol 17-b-dehydrogenase gene. Molec. Endochnol. 4, 268–275 (1990).

    Article  Google Scholar 

  39. Jurka, J., Walichiewicz, J. & Milosavljevic, A. Prototypic sequences for human repetitive DNA. J. molec. Evol .(in the press).

  40. Otha, S., Goto, K., Arai, H. & Kagawa, Y. An extremely acidic amino-terminal presequence of the precursor for the human mitochondrial hinge protein. FEBS Lett. 226, 171–175 (1987).

    Article  Google Scholar 

  41. Stoppa-Lyonnet, D., Carter, P.E., Meo, T. & Tosi, M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. natn. Acad. Sci. U.S.A. 87, 1551–1555 (1990).

    Article  CAS  Google Scholar 

  42. Edwards, A. et al. Automated DNA sequencing of the human HPRT locus. Genomics 6, 593–608 (1989).

    Article  Google Scholar 

  43. Legouis, R. et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67, 423–435 (1991).

    Article  CAS  Google Scholar 

  44. Martin-Gallardo, A. et al. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nature Genet. 1, 34–39 (1992).

    Article  CAS  Google Scholar 

  45. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nature Genet. 1, 358–353 (1992).

    Google Scholar 

  46. Chen, S.J. et al. Ph1+bcr- acute leukemias: implication of Alu sequences in a chromosomal translocation occurring in the new cluster region with the BCR gene. Oncogene 4, 195–202 (1989).

    CAS  PubMed  Google Scholar 

  47. Ohno, H., Takimoto, G. & Mckeihan, T.W. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell-cycle control. Cell 60, 991–997 (1990).

    Article  CAS  Google Scholar 

  48. Hannahan, D. Studies of transformation of Escherichia coli with plasmids. J. molec. Biol. 166, 157–162 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre d'Etude du Polymorphisme Humain, 27 Rue Juliette Dodu, 75010, Paris, France

    François J.M. Iris, Lydie Bougueleret, Sylvie Prieur, Dominique Caterina, Gwenaël Primas, Virginie Perrot, Patricia Rodriguez-Tome, Jean Dausset & Daniel Cohen

  2. Linus Pauling Institute of Science and Medicine, 440 Page Mill Road, Palo Alto, California, 94306, USA

    Jerzy Jurka

  3. National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, 20894, USA

    Jean Michel Claverie

Authors
  1. François J.M. Iris
    View author publications

    Search author on:PubMed Google Scholar

  2. Lydie Bougueleret
    View author publications

    Search author on:PubMed Google Scholar

  3. Sylvie Prieur
    View author publications

    Search author on:PubMed Google Scholar

  4. Dominique Caterina
    View author publications

    Search author on:PubMed Google Scholar

  5. Gwenaël Primas
    View author publications

    Search author on:PubMed Google Scholar

  6. Virginie Perrot
    View author publications

    Search author on:PubMed Google Scholar

  7. Jerzy Jurka
    View author publications

    Search author on:PubMed Google Scholar

  8. Patricia Rodriguez-Tome
    View author publications

    Search author on:PubMed Google Scholar

  9. Jean Michel Claverie
    View author publications

    Search author on:PubMed Google Scholar

  10. Jean Dausset
    View author publications

    Search author on:PubMed Google Scholar

  11. Daniel Cohen
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iris, F., Bougueleret, L., Prieur, S. et al. Dense Alu clustering and a potential new member of the NFκB family within a 90 kilobase HLA Class III segment. Nat Genet 3, 137–145 (1993). https://doi.org/10.1038/ng0293-137

Download citation

  • Received: 10 August 1992

  • Accepted: 28 October 1992

  • Issue date: 01 February 1993

  • DOI: https://doi.org/10.1038/ng0293-137

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics

    • Shuming Chen
    • Weidi Huang
    • Xiao Liu

    Journal of Translational Medicine (2024)

  • Correlation of AIF-1 Expression with Immune and Clinical Features in 1270 Glioma Samples

    • Minchao Rao
    • Zihui Yang
    • Yi Chai

    Journal of Molecular Neuroscience (2022)

  • Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy

    • Zaquer Suzana Munhoz Costa-Ferro
    • Gutierre Neves de Oliveira
    • Jaderson Costa da Costa

    Brain Structure and Function (2020)

  • HLA and SNP haplotype mapping in the Japanese population

    • H Kitajima
    • M Sonoda
    • K Yamamoto

    Genes & Immunity (2012)

  • Daintain/AIF-1 promotes breast cancer cell migration by up-regulated TNF-α via activate p38 MAPK signaling pathway

    • Tao Li
    • Zhiguo Feng
    • Zhengwang Chen

    Breast Cancer Research and Treatment (2012)

You have full access to this article via your institution.

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Journal Metrics
  • Our publishing models
  • Editorial Values Statement
  • Editorial Policies
  • Content Types
  • About the Editors
  • Research Cross-Journal Editorial Team
  • Reviews Cross-Journal Editorial Team
  • Web Feeds
  • Posters
  • Contact

Publish with us

  • Submission Guidelines
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Genetics (Nat Genet)

ISSN 1546-1718 (online)

ISSN 1061-4036 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing