Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribozyme-mediated trans-splicing of a trinucleotide repeat

Abstract

Trinucleotide repeat expansions (TREs) are a recently described class of mutations characterized by a change in the size of the genomic fragment due to amplification of the repeated unit. A number of diseases have been attributed to TRE, including Huntington disease and myotonic dystrophy (DM; refs 1–3), but attempts at genetic therapy have yet to prove successful. A potential therapeutic approach would be to repair the expanded repeat using the trans-splicing ability of group I intron ribozymes4. We have used DM as a model to test this hypothesis. A group I intron ribozyme (DMPK-RZ1) was designed to modify the TRE at the 3′ end of the human myotonic dystrophy protein kinase (DMPK) transcript5–8. DMPK-RZ1 was shown to ligate a small DMPK mRNA fragment, contained within the ribozyme, to a simple DMPK-target RNA in vitro. It also modified a larger target transcript, leading to replacement of twelve repeats with five repeats, both in vitro and in mammalian cells. Finally, this ribozyme successfully replaced the 3′ end of endogenous DMPK mRNA in fibroblasts with a different 3′ region. Ribozyme-mediated RNA repair may thus form a novel therapeutic strategy for diseases associated with repeat expansions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashley, C.T., Jr. & Warren, S.T. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  Google Scholar 

  2. Bates, G. & Lehrach, H. Trinucleotide repeat expansions and human genetic disease. Bioessays 16, 277–284 (1994).

    Article  CAS  Google Scholar 

  3. Timchenko, L.T. & Caskey, C.T. Trinucleotide repeat disorders in humans: discussions of mechanisms and medical issues. FASEB J. 10, 1589–1597 (1996).

    Article  CAS  Google Scholar 

  4. Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371, 619–622 (1994).

    Article  CAS  Google Scholar 

  5. Davies, K.E. et al. Linkage analysis of myotonic dystrophy and sequences on chromosome 19 using a cloned complement 3 gene probe. J. Med. Genet. 20, 259–263 (1983).

    Article  CAS  Google Scholar 

  6. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  Google Scholar 

  7. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  Google Scholar 

  8. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  Google Scholar 

  9. Harper, P.S. Myotonic Dystrophy. (WB Saunders, Phildelphia, 1989).

  10. Shelbourne, P. & Johnson, K. Myotonic dystrophy: another case of too many repeats? Hum. Mutat. 1.183–189 (1992).

    Article  CAS  Google Scholar 

  11. Tsilfidis, C., MacKenzie, A.E., Mettler, G., Barcelo, J. & Korneluk, R.G. Correlation between CTG trinucleotide repeat length and frequency of severecongenital myotonic dystrophy. Nature Genet. 1, 192–195 (1992).

    Article  CAS  Google Scholar 

  12. Cech, T.R., Zaug, A.J. & Grabowski, P.J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  Google Scholar 

  13. Guerrier-Takada, C. & Altman, S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223, 285–286 (1984).

    Article  CAS  Google Scholar 

  14. Rossi, J.J., Controlled, targeted, intracellular expression of ribozymes: progress and problems. Trends Biotech. 13, 301–306 (1995).

    Article  CAS  Google Scholar 

  15. Birikh, K.R., Heaton, P.A. & Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 245, 1–16 (1997).

    Article  CAS  Google Scholar 

  16. Kiehntopf, M., Esquivel, E.L., Brach, M.A. & Herrmann, F. Clinical applications of ribozymes. Lancet 345, 1027–1031 (1995).

    Article  CAS  Google Scholar 

  17. Kilpatrick, M.W. et al. Delivery of a hammerhead ribozyme specifically down-regulates the production of fibrillin-1 by cultured dermal fibroblasts. Hum. Mol. Genet. 5, 1939–1944 (1996).

    Article  CAS  Google Scholar 

  18. Ohta, Y., Kijima, H., Ohkawa, T., Kashani-Sabet, M. & Scanlon, K.J. Tissue-specific expression of an anti-ras ribozyme inhibits proliferation of human malignant melanoma cells. Nucleic Acids Res. 24, 938–942 (1996).

    Article  CAS  Google Scholar 

  19. Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225 (1990).

    Article  CAS  Google Scholar 

  20. Cech, T.R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  21. Jones, J.T., Lee, S.W. & Sullenger, B.A. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nature Med. 2, 643–648 (1996).

    Article  CAS  Google Scholar 

  22. Carango, P., Noble, J.E., Marks, H.G. & Funanage, V.L. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy. Genomics 18, 340–348 (1993).

    Article  CAS  Google Scholar 

  23. Young, B., Herschlag, D. & Cech, T.R. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell 67, 1007–1019 (1991).

    Article  CAS  Google Scholar 

  24. Johnson, K.J. et al. Is myotonic dystrophy a single-gene disorder? Biochem. Soc. Trans. 24, 510–513 (1996).

    Article  CAS  Google Scholar 

  25. Hamshere, M.G. & Brook, J.D. Myotonic dystrophy, knockouts, warts and all. Trends Genet. 12, 332–334 (1996).

    Article  CAS  Google Scholar 

  26. Jansen, G. et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genet. 13, 316–324 (1996).

    Article  CAS  Google Scholar 

  27. Reddy, S. et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nature Genet. 13, 325–334 (1996).

    Article  CAS  Google Scholar 

  28. Klesert, T.R., Otten, A.D., Bird, T.D. & Tapscott, S.J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nature Genet. 16, 402–106 (1997).

    Article  CAS  Google Scholar 

  29. Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H. & Housman, D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA 94, 7388–7393 (1997).

    Article  CAS  Google Scholar 

  30. Shaw, D.J. et al. Genomic organization and transcriptional units at the myotonic dystrophy locus. Genomics 18, 673–679 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas A. Phylactou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phylactou, L., Darrah, C. & Wood, M. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet 18, 378–381 (1998). https://doi.org/10.1038/ng0498-378

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng0498-378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing