Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A murine model of Menkes disease reveals a physiological function of metallothionein

Abstract

Human Menkes disease and the murine Mottled phenotype are X-linked diseases that result from copper deficiency due to mutations in a copper-effluxing ATPase, designated ATP7A1–5. Male mice with the Mottled-Brindled allele (Mo-brJ) accumulate copper in the intestine, fail to export copper to peripheral organs and die a few weeks after birth. Much of the intestinal copper is bound by metallothionein (MT)6. To determine the function of MT in the presence of Atp7a deficiency, we crossed Mo-brJ females with males that bear a targeted disruption of the Mt1 and Mt2 genes (Mt −/−)7. On an Mt −/− background, most Mo-brJ males as well as heterozygous Mo-brJ females die before embryonic day 11. The lethality in Mo-brJ females can be explained by preferential inactivation of the paternal X chromosome in extraembryonic tissues8 and resultant copper toxicity in the absence of MT. In support of this hypothesis, cell lines derived from Mt−/−, Mo-brJ embryos are very sensitive to copper toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13 (1993).

    Article  CAS  Google Scholar 

  2. Chelly, J. et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3, 14–19 (1993).

    Article  CAS  Google Scholar 

  3. Mercer, J.F. et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3, 20–25 (1993).

    Article  CAS  Google Scholar 

  4. Levinson, B. et al. The mottled gene is the mouse homologue of the Menkes disease gene. Nature Genet. 6, 369–373 (1994).

    Article  CAS  Google Scholar 

  5. Mercer, J.F.B. et al. Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nature Genet. 6, 374–378 (1994).

    Article  CAS  Google Scholar 

  6. Hunt, D.M. & Port, A.E. Trace element binding in the copper deficient mottled mutants in the mouse. Life Sci. 24, 1453–1466 (1979).

    Article  CAS  Google Scholar 

  7. Masters, B.A., Kelly, E.J., Quaife, C.J., Brinster, R.L. & Palmiter, R.D. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. USA 91, 584–588 (1994).

    Article  CAS  Google Scholar 

  8. West, J.D., Frels, W.I., Chapman, V.M. & Papaioannou, V.E. Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12, 873–882 (1977).

    Article  CAS  Google Scholar 

  9. Kägi, J.H.R., Evolution, structure and chemical activity of class I metallothioneins: an overview, in Metallothionein III: Biological Roles and Medical Implications (eds. Suzuki, K.T., Imura, N. & Kimura, M.) 29–55 (Birkhäuser Verlag, Bäsel, Switzerland, 1993).

    Google Scholar 

  10. Iszard, M.B. et al. Characterization of metallothionein-l-transgenic mice. ToxicolAppl. Pharmacol. 133, 305–312 (1995).

    CAS  Google Scholar 

  11. Michalska, A.E. & Choo, A.K.H. Taigeted and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc. Natl. Acad. Sci. USA 90, 8088–8092 (1993).

    Article  CAS  Google Scholar 

  12. Kelly, E.J. & Palmiter, R.D. Metallothionein-I and -II protect against zinc deficiency and zinc toxicrty. J. Nutr. (in the press).

  13. Cuthbert, J.A. Wilson's disease: a new gene and an animal model for an old disease. J. Investig. Med. 43, 323–326 (1995).

    CAS  PubMed  Google Scholar 

  14. Palmiter, R.D. & Findley, S.D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14, 639–649 (1995).

    Article  CAS  Google Scholar 

  15. Hunt, D.M. Primary defect in copper transport underlies mottled mutants in the mouse. Nature 249, 852–854 (1974).

    Article  CAS  Google Scholar 

  16. Database (MGD), Mouse Genome Informatics Project, The Jackson Laboratory, Bar Harbor, Maine. World Wide Web (URL: http://www.informatics.jax.org) (July, 1995).

  17. Philips, M., Camakaris, J. & Danks, D.M. Comparisons of copper deficiency states in the murine mutants blotchy and brindled. Biochem. J. 238, 177–183 (1986).

    Article  Google Scholar 

  18. Andrews, G.K., Adamson, E.D. & Gedamu, L. The ontogeny of murine metallothionein: comparison with the α-fetoprotein gene. Dev. Biol. 103, 294–303 (1984).

    Article  CAS  Google Scholar 

  19. Shao, C. & Takagi, N. An extra maternally derived X chromosome is deleterious to early mouse development. Development 110, 969–975 (1990).

    CAS  PubMed  Google Scholar 

  20. Harrison, K.B. X-chromosome inactivation in the human cytotrophoblast. Cytogenet Cell. Genet. 52, 37–41 (1989).

    Article  CAS  Google Scholar 

  21. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C. & Schmidt, M. Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proc. Natl. Acad. Sci. USA 82, 3390–3394 (1985).

    Article  CAS  Google Scholar 

  22. McArdle, H.J. & Eriich, R. Copper uptake and transfer to the mouse fetus during pregnancy. J. Nutr. 121, 208–214 (1991).

    Article  CAS  Google Scholar 

  23. Palmiter, R.D., Sandgren, E.R., Koeller, D.M. & Brinster, R.L. Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13, 5266–5275 (1993).

    Article  CAS  Google Scholar 

  24. Palmiter, R.D., Findley, S.D., Whitmore, T.E. & Durnam, D.M. MT-III, a brain-specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. USA 89, 6333–6337 (1992).

    Article  CAS  Google Scholar 

  25. Freshney, R.I., in Culture of Animal Cells: A Manual of Basic Technique, 2ndEdn. 107–126 (Alan R. Liss, Inc., New York, 1987).

    Google Scholar 

  26. Mossman, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, E., Palmiter, R. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat Genet 13, 219–222 (1996). https://doi.org/10.1038/ng0696-219

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng0696-219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing