Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clustering of missense mutations in the ataxia-telanglectasia gene in a sporadic T-cell leukaemia

Abstract

Ataxia-telangiectasia (A-T) is a recessive multi-system disorder caused by mutations in the ATM gene1,2 at 11q22–q23 (ref. 3). The risk of cancer, especially lymphoid neoplasias, is substantially elevated in A-T patients4 and has long been associated with chromosomal instability5. By analysing tumour DNA from patients with sporadic T-cell prolymphocytic leukaemia (T-PLL), a rare clonal malignancy with similarities to a mature T-cell leukaemia seen in A-T6,7, we demonstrate a high frequency of ATM mutations in T-PLL In marked contrast to the ATM mutation pattern in A-T, the most frequent nucleotide changes in this leukaemia were missense mutations. These clustered in the region corresponding to the kinase domain, which is highly conserved in ATM-related proteins in mouse, yeast and Drosophila. The resulting amino-acid substitutions are predicted to interfere with ATP binding or substrate recognition. Two of seventeen mutated T-PLL samples had a previously reported A-T allele. In contrast, no mutations were detected in the p53 gene, suggesting that this tumour suppressor is not frequently altered in this leukaemia. Occasional missense mutations in ATM were also found in tumour DNA from patients with B-cell non-Hodgkin's lymphomas (B-NHL) and a B-NHL cell line. The evidence of a significant proportion of loss-of-function mutations and a complete absence of the normal copy of ATM in the majority of mutated tumours establishes somatic inactivation of this gene in the pathogenesis of sporadic T-PLL and suggests that ATM acts as a tumour suppressor. As constitutional DNA was not available, a putative hereditary predisposition to T-PLL will require further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  CAS  Google Scholar 

  2. Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    Article  CAS  Google Scholar 

  3. Gatti, R.A. et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336, 577–580 (1988).

    Article  CAS  Google Scholar 

  4. Taylor, A.M.R., Metcalfe, J.A., Thick, J. & Mak, Y.-F. Leukemia and lymphoma in ataxia telangiectasia. Blood B7, 423–438 (1996).

    Google Scholar 

  5. Hecht, R., et al. Leukaemia and lymphocytes in ataxia-telangiectasia. Lancet 2, 1193 (1966).

    Article  Google Scholar 

  6. Galton, D.A.G. et al. Prolymphocytic leukaemia. Br. J. Haematol. 27, 7–23 (1974).

    Article  CAS  Google Scholar 

  7. Brito-Babapulle, V. & Catovsky, D. Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-cell prolymphocytic leukemia and T-cell leukemias in patients with ataxia-telangiectasia. Cancer Genet Cytogenet. 55, 1–9 (1991).

    Article  CAS  Google Scholar 

  8. Matutes, E. et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 78, 3269–3274 (1991).

    CAS  PubMed  Google Scholar 

  9. Taylor, A.M.R. & Butterworth, S.V. Clonal evolution of T-cell chronic lymphocytic leukaemia in a patient with ataxia telangiectasia. Int. J. Cancer 37, 511–516 (1986).

    Article  CAS  Google Scholar 

  10. Russo, G. et al. Molecular analysis of a t(14;14) translocation in leukemic T-cell of an ataxia telangiectasia patient. Proc. Natl. Acad. Sci. USA 86, 602–606 (1989).

    Article  CAS  Google Scholar 

  11. Voˇechovstý, I. et al. The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumours reveals no evidence for mutation. Cancer Res. 56, 2726–2732 (1996).

    Google Scholar 

  12. Vořechovský, I. et al. Exon-scanning mutation analysis of the ATM gene in patients with ataxia-telangiectasia. Eur. J. Hum. Genet. 4, 352–355 (1996).

    Article  Google Scholar 

  13. Gilad, S. et al. Predominance of null mutations in ataxia-telangiectasia. Hum. Mol. Genet. 5, 433–439 (1996).

    Article  CAS  Google Scholar 

  14. Byrd, P. et al. Mutations revealed by sequencing the 5′ half of the gene for ataxia telangiectasia. Hum. Mol. Genet. 5, 145–149 (1996).

    Article  CAS  Google Scholar 

  15. Telatar, M. et al. Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am. J. Hum. Genet. 59, 40–44 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wright, J. et al. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia. Am. J. Hum. Genet. 59, 839–846 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baumer, A., Bernthaler, U., Wolz, W., Hoehn, H. & Schindler, D. New mutations in the ataxia-telangiectasia gene. Hum. Genet. 98, 246–249 (1996).

    Article  CAS  Google Scholar 

  18. Zech, L., Hammarström, L. & Smith, C.I.E. Chromosomal aberrations in a case of T-cell CLL with concomitant IgA myeloma. Int. J. Cancer 32, 431–435 (1983).

    Article  CAS  Google Scholar 

  19. Zakian, V.A. ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687 (1995).

    Article  CAS  Google Scholar 

  20. Lakin, N.D. et al. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13, 2707–2716 (1996).

    CAS  PubMed  Google Scholar 

  21. McConville, C.M. et al. Mutations associated with variant phenotypes in ataxia-telangiectasia. Am. J. Hum. Genet. 59, 320–330 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shafman, T. et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387, 520–523 (1997).

    Article  CAS  Google Scholar 

  23. Easton, D.F. Cancer risk in A-T heterozygotes. Int. J. Radiat. Biol. 66, S177–S182 (1994).

    Article  CAS  Google Scholar 

  24. Swift, M., Morrell, D., Massey, R.B. & Chase, C.L. Incidence of cancer in 161 families affected by ataxia telangiectasia. N. Engl. J. Med. 325, 1831–1836 (1991).

    Article  CAS  Google Scholar 

  25. Hartwell, L.H. & Kastan, M.B. Cell cycle control and cancer. Science 266, 1821–1828 (1994).

    Article  CAS  Google Scholar 

  26. Jadayel, D.M. et al. Potential role for concurrent abnormalities of the cyclin D1, p16cbKN2 and pl5CDKW2B genes jn certain B cell non-Hodgkin's lymphomas: functional studies in a cell line (Granta 519). Leukemia 11, 64–72 (1997).

    Article  CAS  Google Scholar 

  27. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  28. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  Google Scholar 

  29. Knudson, A.G. Mutation and cancer: statistical study of retinoblastoma. Proc Natl. Acad. Sci. USA 68, 820–823 (1971).

    Article  Google Scholar 

  30. Voˇechovský et al. ATM mutations in cancer families. Cancer Res. 56, 4130–4133 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vořechovský, I., Luo, L., Dyer, M. et al. Clustering of missense mutations in the ataxia-telanglectasia gene in a sporadic T-cell leukaemia. Nat Genet 17, 96–99 (1997). https://doi.org/10.1038/ng0997-96

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng0997-96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing