Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity

Abstract

Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte−/− mice die after embryonic day 8, and Nte+/− mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte+/− and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the NTE and Nte genomic loci and identification of NTE-R1.
Figure 2: Generation of mice with disruptions in Nte.
Figure 3: Nte−/− mice are not viable beyond E8.
Figure 4: Nte is highly expressed in developing spinal cord and lens and in specific regions of the adult brain and testes.
Figure 5: Nte+/− mice had lower activity of Nte but not acetylcholinesterase.
Figure 6: Nte+/− mice were more sensitive to organophosphate toxicity and showed greater motor activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Karczmar, A.G. Acute and long lasting central actions of organophosphorus agents. Fundam. Appl. Toxicol. 4, S1–17 (1984).

    Article  CAS  Google Scholar 

  2. Solberg, Y. & Belkin, M. The role of excitotoxicity in organophosphorous nerve agents central poisoning. Trends Pharmacol. Sci. 18, 183–185 (1997).

    Article  CAS  Google Scholar 

  3. Haley, R.W. & Kurt, T.L. Self-reported exposure to neurotoxic chemical combinations in the Gulf War. A cross-sectional epidemiologic study. JAMA 277, 231–237 (1997).

    Article  CAS  Google Scholar 

  4. Enserink, M. Gulf War illness: the battle continues. Science 291, 812–817 (2001).

    Article  CAS  Google Scholar 

  5. Hitt, E. New investigations into Gulf War syndrome. Nat. Med. 8, 198 (2002).

    Article  CAS  Google Scholar 

  6. Haley, R.W. et al. Evaluation of neurologic function in Gulf War veterans. A blinded case-control study. JAMA 277, 223–230 (1997).

    Article  CAS  Google Scholar 

  7. Lotti, M. Low-level exposures to organophosphorus esters and peripheral nerve function. Muscle Nerve 25, 492–504 (2002).

    Article  CAS  Google Scholar 

  8. Ray, D.E. & Richards, P.G. The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicol. Lett. 120, 343–351 (2001).

    Article  CAS  Google Scholar 

  9. Jamal, G.A. Gulf War syndrome—a model for the complexity of biological and environmental interaction with human health. Adverse Drug React. Toxicol. Rev. 17, 1–17 (1998).

    CAS  PubMed  Google Scholar 

  10. Glynn, P. Neuropathy target esterase. Biochem. J. 344, 625–631 (1999).

    Article  CAS  Google Scholar 

  11. Johnson, M.K. The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J. Neurochem. 23, 785–789 (1974).

    Article  CAS  Google Scholar 

  12. Glynn, P. Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog. Neurobiol. 61, 61–74 (2000).

    Article  CAS  Google Scholar 

  13. Johnson, M.K. & Glynn, P. Neuropathy target esterase. in Handbook of Pesticide Toxicology, Vol. 2 (ed. Krieger, R.I.) 953–965 (Academic Press, San Diego, 2001).

    Chapter  Google Scholar 

  14. Lush, M.J., Li, Y., Read, D.J., Willis, A.C. & Glynn, P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332, 1–4 (1998).

    Article  CAS  Google Scholar 

  15. Moser, M. et al. Cloning and expression of the murine sws/NTE gene. Mech. Dev. 90, 279–282 (2000).

    Article  CAS  Google Scholar 

  16. Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M. & Benzer, S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 17, 7425–7432 (1997).

    Article  CAS  Google Scholar 

  17. Veronesi, B., Ehrich, M., Blusztajn, J.K., Oortgiesen, M. & Durham, H. Cell culture models of interspecies selectivity to organophosphorous insecticides. Neurotoxicology 18, 283–297 (1997).

    CAS  PubMed  Google Scholar 

  18. Husain, K., Vijayaraghavan, R., Pant, S.C., Raza, S.K. & Pandey, K.S. Delayed neurotoxic effect of sarin in mice after repeated inhalation exposure. J. Appl. Toxicol. 13, 143–145 (1993).

    Article  CAS  Google Scholar 

  19. Wu, S.Y. & Casida, J.E. Subacute neurotoxicity induced in mice by potent organophosphorus neuropathy target esterase inhibitors. Toxicol. Appl. Pharmacol. 139, 195–202 (1996).

    Article  CAS  Google Scholar 

  20. Meredith, C. & Johnson, M.K. Neuropathy target esterase: rates of turnover in vivo following covalent inhibition with phenyl di-n-pentylphosphinate. J. Neurochem. 51, 1097–1101 (1988).

    Article  CAS  Google Scholar 

  21. Ehrich, M. & Jortner, B.S. Organophosphorous-induced delayed neuropathy. in Handbook of Pesticide Toxicology, Vol. 2 (ed. Krieger, R.I.) 987–1012 (Academic Press, San Diego, 2001).

    Chapter  Google Scholar 

  22. Ehrich, M., Jortner, B.S. & Padilla, S. Relationship of neuropathy target esterase inhibition to neuropathology and ataxia in hens given organophosphorus esters. Chem. Biol. Interact. 87, 431–437 (1993).

    Article  CAS  Google Scholar 

  23. Atkins, J. & Glynn, P. Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J. Biol. Chem. 275, 24477–24483 (2000).

    Article  CAS  Google Scholar 

  24. Mignery, G.A., Pikaard, C.S. & Park, W.D. Molecular characterization of the patatin multigene family of potato. Gene 62, 27–44 (1988).

    Article  CAS  Google Scholar 

  25. Wu, S.Y. & Casida, J.E. Ethyl octylphosphonofluoridate and analogs: optimized inhibitors of neuropathy target esterase. Chem. Res. Toxicol. 8, 1070–1075 (1995).

    Article  CAS  Google Scholar 

  26. Jamal, G.A. Neurological syndromes of organophosphorus compounds. Adverse Drug React. Toxicol. Rev. 16, 133–170 (1997).

    CAS  PubMed  Google Scholar 

  27. Wilson, B.W., Henderson, J.D., Coatney, E.M., Nieberg, P.S. & Spencer, P.S. Actions of pyridostigmine and organophosphate agents on chick cells, mice, and chickens. Drug Chem. Toxicol. 25, 131–139 (2002).

    Article  CAS  Google Scholar 

  28. Schettler, T. Toxic threats to neurologic development of children. Environ. Health Perspect. 109 Suppl 6, 813–816 (2001).

    Article  CAS  Google Scholar 

  29. Hardell, L., Lindstrom, G. & Van Bavel, B. Is DDT exposure during fetal period and breast-feeding associated with neurological impairment? Environ. Res. 88, 141–144 (2002).

    Article  CAS  Google Scholar 

  30. Vilanova, E., Barril, J. & Carrera, V. Biochemical properties and possible toxicological significance of various forms of NTE. Chem. Biol. Interact. 87, 369–381 (1993).

    Article  CAS  Google Scholar 

  31. Escudero, M.A., Cespedes, M.V. & Vilanova, E. Chromatographic discrimination of soluble neuropathy target esterase isoenzymes and related phenyl valerate esterases from chicken brain, spinal cord, and sciatic nerve. J. Neurochem. 68, 2170–2176 (1997).

    Article  CAS  Google Scholar 

  32. Tormo, N., Gimeno, J.R., Sogorb, M.A., Diaz-Alejo, N. & Vilanova, E. Soluble and particulate organophosphorus neuropathy target esterase in brain and sciatic nerve of the hen, cat, rat, and chick. J. Neurochem. 61, 2164–2168 (1993).

    Article  CAS  Google Scholar 

  33. Akbarsha, M.A. & Sivasamy, P. Male reproductive toxicity of phosphamidon: histopathological changes in epididymis. Indian J. Exp. Biol. 36, 34–38 (1998).

    CAS  PubMed  Google Scholar 

  34. Hamm, J.T., Wilson, B.W. & Hinton, D.E. Organophosphate-induced acetylcholinesterase inhibition and embryonic retinal cell necrosis in vivo in the teleost (Oryzias latipes). Neurotoxicology 19, 853–869 (1998).

    CAS  PubMed  Google Scholar 

  35. Forshaw, P.J., Atkins, J., Ray, D.E. & Glynn, P. The catalytic domain of human neuropathy target esterase mediates an organophosphate-sensitive ionic conductance across liposome membranes. J. Neurochem. 79, 400–406 (2001).

    Article  CAS  Google Scholar 

  36. van Tienhoven, M., Atkins, J., Li, Y. & Glynn, P. Human neuropathy target esterase catalyses hydrolysis of membrane lipids. J. Biol. Chem. 277, 20942–20948 (2002).

    Article  CAS  Google Scholar 

  37. Yau, K.W. Cyclic nucleotide-gated channels: an expanding new family of ion channels. Proc. Natl. Acad. Sci. USA 91, 3481–3483 (1994).

    Article  CAS  Google Scholar 

  38. Burgess, J.R., Stevens, L., Zhang, W. & Peck, L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 71, 327S–330S (2000).

    Article  CAS  Google Scholar 

  39. Ishimatsu, M., Kidani, Y., Tsuda, A. & Akasu, T. Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. J. Neurophysiol. 87, 1206–1212 (2002).

    Article  CAS  Google Scholar 

  40. De Bleecker, J.L., De Reuck, J.L. & Willems, J.L. Neurological aspects of organophosphate poisoning. Clin. Neurol. Neurosurg. 94, 93–103 (1992).

    Article  CAS  Google Scholar 

  41. Randall, J.C., Yano, B.L. & Richardson, R.J. Potentiation of organophosphorus compound-induced delayed neurotoxicity (OPIDN) in the central and peripheral nervous system of the adult hen: distribution of axonal lesions. J. Toxicol. Environ. Health 51, 571–590 (1997).

    CAS  PubMed  Google Scholar 

  42. Moretto, A. & Lotti, M. The relationship between isofenphos cholinergic toxicity and the development of polyneuropathy in hens and humans. Arch. Toxicol. 76, 367–375 (2002).

    Article  CAS  Google Scholar 

  43. Casareno, R.L., Waggoner, D. & Gitlin, J.D. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 273, 23625–23628 (1998).

    Article  CAS  Google Scholar 

  44. Ross, C.A. et al. Polyglutamine pathogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1005–1011 (1999).

    Article  CAS  Google Scholar 

  45. Cavanagh, J.B. Peripheral neuropathy caused by chemical agents. CRC Crit. Rev. Toxicol. 2, 365–417 (1973).

    Article  CAS  Google Scholar 

  46. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  47. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  Google Scholar 

  48. Ried, T., Landes, G., Dackowski, W., Klinger, K. & Ward, D.C. Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum. Mol. Genet. 1, 307–313 (1992).

    Article  CAS  Google Scholar 

  49. Johnson, M.K. Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch. Toxicol. 37, 113–115 (1977).

    Article  CAS  Google Scholar 

  50. Ellman, G.L., Courtney, K.D., Andres Jr., V. & Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Garrett, J. Cheng, Y. Dayn and K-F. Lee for assistance in generating transgenic mice, D. Wangsa for assistance with cytogenetic analyses, R. Helton for animal husbandry, E. Annas for technical support and B. Cravatt and S. Heinemann for comments and experimental advice. This work was supported by the Canadian Institutes of Health Research (C.J.W.), the US National Institute of Environmental Health Sciences, the US National Institutes of Health (J.E.C), the Department of Defense (US Army Medical Research and Material Command) and the Frederick B. Rentschler Endowed Chair (C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrolee Barlow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winrow, C., Hemming, M., Allen, D. et al. Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat Genet 33, 477–485 (2003). https://doi.org/10.1038/ng1131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing