Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Abstract

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular representations of the genomes of B. bronchiseptica, B. parapertussis and B. pertussis.
Figure 2: Linear genomic comparison of B. pertussis, B. bronchiseptica and B. parapertussis.
Figure 3: Venn diagram showing gene complements of B. pertussis, B. parapertussis and B. bronchiseptica.
Figure 4: Representation of genes lost in B. pertussis and B. parapertussis.
Figure 5: The ptxA promoter regions of B. pertussis, B. parapertussis and B. bronchiseptica.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cherry, J.D. Historical review of pertussis and the classical vaccine. J. Infect. Dis. 174, S259–S263 (1996).

    Article  Google Scholar 

  2. World Health Organization. The World Health Report 2002: Reducing risks, promoting healthy life. (World Health Organization, Geneva, 2002).

  3. van Loo, I.H., Heuvelman, K.J., King, A.J. & Mooi, F.R. Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J. Clin. Microbiol. 40, 1994–2001 (2002).

    Article  CAS  Google Scholar 

  4. Porter, J.F., Connor, K. & Donachie, W. Isolation and characterization of Bordetella parapertussis-like bacteria from ovine lungs. Microbiology 140, 255–261 (1994).

    Article  Google Scholar 

  5. Heininger, U. et al. Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr. Infect. Dis. J. 13, 306–309 (1994).

    Article  CAS  Google Scholar 

  6. van der Zee, A., Mooi, F., Van Embden, J. & Musser, J. Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J. Bacteriol. 179, 6609–6617 (1997).

    Article  CAS  Google Scholar 

  7. Goodnow, R.A. Biology of Bordetella bronchiseptica. Microbiol. Rev. 44, 722–738 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cotter, P.A. & Miller, J.F. Bordetella. in Principles of Bacterial Pathogenesis (ed. Groisman, E.) 619–674 (Academic, San Diego, 2001).

    Book  Google Scholar 

  9. Tillier, E.R. & Collins, R.A. Genome rearrangement by replication-directed translocation. Nat. Genet. 26, 195–197 (2000).

    Article  CAS  Google Scholar 

  10. Mackiewicz, P., Mackiewicz, D., Kowalczuk, M. & Cebrat, S. Flip-flop around the origin and terminus of replication in prokaryotic genomes. Genome Biol. 2, INTERACTIONS1004 (2001).

  11. Karlin, S. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol. 9, 335–343 (2001).

    Article  CAS  Google Scholar 

  12. Stibitz, S. & Yang, M.S. Genomic plasticity in natural populations of Bordetella pertussis. J. Bacteriol. 181, 5512–5515 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    Article  CAS  Google Scholar 

  14. Thalen, M. et al. Rational medium design for Bordetella pertussis: basic metabolism. J. Biotechnol. 75, 147–159 (1999).

    Article  CAS  Google Scholar 

  15. Brockmeier, S.L. et al. Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect. Immun. 70, 481–490 (2002).

    Article  CAS  Google Scholar 

  16. Mattoo, S., Foreman-Wykert, A.K., Cotter, P.A. & Miller, J.F. Mechanisms of Bordetella pathogenesis. Front. Biosci. 6, E168–E186 (2001).

    Article  CAS  Google Scholar 

  17. Coutte, L. et al. Role of adhesin release for mucosal colonization by a bacterial pathogen. J. Exp. Med. 197, 735–742 (2003).

    Article  CAS  Google Scholar 

  18. Jacob-Dubuisson, F. et al. Molecular characterization of Bordetella bronchiseptica filamentous haemagglutinin and its secretion machinery. Microbiology 146, 1211–1221 (2000).

    Article  CAS  Google Scholar 

  19. Tuomanen, E. et al. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J. Exp. Med. 168, 267–277 (1988).

    Article  CAS  Google Scholar 

  20. Tuomanen, E.I., Nedelman, J., Hendley, J.O. & Hewlett, E.L. Species specificity of Bordetella adherence to human and animal ciliated respiratory epithelial cells. Infect. Immun. 42, 692–695 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Willems, R.J. van der Heide, H.G. & Mooi, F.R. Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous haemagglutinin gene. Mol. Microbiol. 6, 2661–2671 (1992).

    Article  CAS  Google Scholar 

  22. Mooi, F.R., ter Avest, A. & van der Heide, H.G. Structure of the Bordetella pertussis gene coding for the serotype 3 fimbrial subunit. FEMS Microbiol. Lett. 54, 327–331 (1990).

    Article  CAS  Google Scholar 

  23. Kania, S.A. et al. Characterization of fimN, a new Bordetella bronchiseptica major fimbrial subunit gene. Gene 256, 149–155 (2000).

    Article  CAS  Google Scholar 

  24. Pedroni, P. et al. Cloning of a novel pilin-like gene from Bordetella pertussis: homology to the fim2 gene. Mol. Microbiol. 2, 539–543 (1988).

    Article  CAS  Google Scholar 

  25. Livey, I., Duggleby, C.J. & Robinson, A. Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol. Microbiol. 1, 203–209 (1987).

    Article  CAS  Google Scholar 

  26. Henderson, I.R. & Nataro, J.P. Virulence functions of autotransporter proteins. Infect. Immun. 69, 1231–1243 (2001).

    Article  CAS  Google Scholar 

  27. Coutte, L., Antoine, R., Drobecq, H., Locht, C. & Jacob-Dubuisson, F. Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J. 20, 5040–5048 (2001).

    Article  CAS  Google Scholar 

  28. Moore, C.H., Foster, L.A., Gerbig, D.G. Jr., Dyer, D.W. & Gibson, B.W. Identification of alcaligin as the siderophore produced by Bordetella pertussis and B. bronchiseptica. J. Bacteriol. 177, 1116–1118 (1995).

    Article  CAS  Google Scholar 

  29. Galan, J.E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  30. Yuk, M.H., Harvill, E.T. & Miller, J.F. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol. Microbiol. 28, 945–959 (1998).

    Article  CAS  Google Scholar 

  31. Stockbauer, K.E., Foreman-Wykert, A.K. & Miller, J.F. Bordetella type III secretion induces caspase 1-independent necrosis. Cell. Microbiol. 5, 123–132 (2003).

    Article  CAS  Google Scholar 

  32. Di Fabio, J.L., Caroff, M., Karibian, D., Richards, J.C. & Perry, M.B. Characterization of the common antigenic lipopolysaccharide O-chains produced by Bordetella bronchiseptica and Bordetella parapertussis. FEMS Microbiol. Lett. 76, 275–281 (1992).

    Article  CAS  Google Scholar 

  33. Vinogradov, E., Peppler, M.S. & Perry, M.B. The structure of the nonreducing terminal groups in the O-specific polysaccharides from two strains of Bordetella bronchiseptica. Eur. J. Biochem. 267, 7230–7237 (2000).

    Article  CAS  Google Scholar 

  34. Preston, A. et al. Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. Infect. Immun. 67, 3763–3767 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Moxon, E.R. & Kroll, J.S. The role of bacterial polysaccharide capsules as virulence factors. Curr. Top. Microbiol. Immunol. 150, 65–85 (1990).

    CAS  PubMed  Google Scholar 

  36. Weiss, A.A., Melton, A.R., Walker, K.E., Andraos-Selim, C. & Meidl, J.J. Use of the promoter fusion transposon Tn5 lac to identify mutations in Bordetella pertussis vir-regulated genes. Infect. Immun. 57, 2674–2682 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuwano, A., Ito, T., Tachi, H. & Hiramune, T. Comparison of the inhibitory effect of sulfamonomethoxine and other sulfonamides on capsule formation of Bordetella bronchiseptica. J. Vet. Med. Sci. 54, 1057–1059 (1992).

    Article  CAS  Google Scholar 

  38. Frosch, M., Edwards, U., Bousset, K., Krausse, B. & Weisgerber, C. Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides. Mol. Microbiol. 5, 1251–1263 (1991).

    Article  CAS  Google Scholar 

  39. Arico, B. & Rappuoli, R. Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169, 2847–2853 (1987).

    Article  CAS  Google Scholar 

  40. Boucher, P.E. & Stibitz, S. Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis. J. Bacteriol. 177, 6486–6491 (1995).

    Article  CAS  Google Scholar 

  41. Maurelli, A.T., Fernandez, R.E., Bloch, C.A., Rode, C.K. & Fasano, A. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 3943–3948 (1998).

    Article  CAS  Google Scholar 

  42. Foreman-Wykert, A.K. & Miller, J.F. Hypervirulence and pathogen fitness. Trends. Microbiol. 11, 105–108 (2003).

    Article  CAS  Google Scholar 

  43. Sambrook, J. & Russell, D.W. Molecular cloning: a laboratory manual vol. 3 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

  44. Stibitz, S. & Garletts, T.L. Derivation of a physical map of the chromosome of Bordetella pertussis Tohama I. J. Bacteriol. 174, 7770–7777 (1992).

    Article  CAS  Google Scholar 

  45. Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000).

    Article  CAS  Google Scholar 

  46. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000).

    Article  CAS  Google Scholar 

  47. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  48. Whittam, T.S. Genetic variation and evolutionary processes in natural populations of Escherichia coli. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds. Neidhardt, F.C. & Curtiss, R.) 2708–2720 (ASM Press, Washington, D.C., 1996).

    Google Scholar 

  49. Guttman, D.S. & Dykhuizen, D.E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380–1383 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Stibitz for help with reconciling our assembly with his map and to D. Relman and C. Cummings for access to unpublished data. We acknowledge support from the Wellcome Trust Sanger Institute core sequencing and informatics groups. This work was supported by the Wellcome Trust through its Beowulf Genomics initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian Parkhill or Duncan J Maskell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhill, J., Sebaihia, M., Preston, A. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35, 32–40 (2003). https://doi.org/10.1038/ng1227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing