Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster

Abstract

Control of growth determines the size and shape of organs. Localized signals known as 'organizers' and members of the Pax family of proto-oncogenes are both elements in this control. Pax proteins have a conserved DNA-binding paired domain, which is presumed to be essential for their oncogenic activity. We present evidence that the organizing signal Notch does not promote growth in eyes of D. melanogaster through either Eyeless (Ey) or Twin of eyeless (Toy), the two Pax6 transcription factors. Instead, it acts through Eyegone (Eyg), which has a truncated paired domain, consisting of only the C-terminal subregion. In humans and mice, the sole PAX6 gene produces the isoform PAX6(5a) by alternative splicing; like Eyegone, this isoform binds DNA though the C terminus of the paired domain. Overexpression of human PAX6(5a) induces strong overgrowth in vivo, whereas the canonical PAX6 variant hardly effects growth. These results show that growth and eye specification are subject to independent control and explain hyperplasia in a new way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signaling is necessary and sufficient to activate eyg expression in the D. melanogaster eye dorsal-ventral organizer.
Figure 2: Eyg lies downstream of and mediates Notch signaling in eye growth.
Figure 3: eyg mRNA expression patterns in wild-type and mutant third-instar discs.
Figure 4: Dose of eyg+ directly affects eye size.
Figure 5: eyg inactivation does not impair eye and head specification.
Figure 6: Boundaries of eyg+ and eyg cells create new growth-promoting organizers.
Figure 7: Outgrowths or ectopic retinal differentiation responses to human PAX6(5a) or PAX6 in the developing wing.

Similar content being viewed by others

References

  1. Martinez, S. The isthmic organizer and brain regionalisation. Int. J. Dev. Biol. 45, 367–371 (2001).

    CAS  Google Scholar 

  2. Ohuchi, H. & Noji, S. Fibroblast-growth-factor induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell. Tissue Res. 199, 247–261 (1999).

    Google Scholar 

  3. Irvine, K.D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001).

    Article  CAS  Google Scholar 

  4. Neumann, C. & Cohen, S. Morphogens and pattern formation. Bioessays 19, 721–729 (1997).

    Article  CAS  Google Scholar 

  5. Dahl, E., Koseki, H. & Balling, R. Pax genes and organogenesis. Bioessays 18, 755–765 (1997).

    Article  Google Scholar 

  6. Chi, N. & Epstein, J. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 18, 41–47 (2002).

    Article  CAS  Google Scholar 

  7. Das, P. et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum. Genet. 110, 371–376 (2002).

    Article  CAS  Google Scholar 

  8. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 7, 463–471 (1994).

    Article  CAS  Google Scholar 

  9. Ton, C.T. et al. Positional cloning and characterisation of a paired box- and homeobox-containing gene from aniridia region. Cell 68, 491–505 (1991).

    Google Scholar 

  10. van Heyningen, V. & Williamson, K. PAX6 in sensory development. Hum. Mol. Genet. 11, 1161–1167 (2002).

    Article  CAS  Google Scholar 

  11. Cillo, C., Cantile, M., Faiella, A. & Boncinelli, E. Homeobox genes in normal and malignant cells. J. Cell Physiol. 188, 161–169 (2001).

    Article  CAS  Google Scholar 

  12. Gnarra, J.R. & Dressler, G.R. Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Cancer Res. 55, 4092–4098 (1995).

    CAS  Google Scholar 

  13. Scholl, F.A. et al. PAX3 is expressed in human melanomas and contributes to tumor cells survival. Cancer Res. 61, 823–826 (2001).

    CAS  Google Scholar 

  14. Winyard, P.J. et al. The PAX2 transcription factor is expressed in cystic and hyperproliferative dysplastic epithelium in human kidney malformations. J. Clin. Invest. 98, 451–459 (1996).

    Article  CAS  Google Scholar 

  15. Kroll, T.G. et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289, 1357–1360 (2000).

    Article  CAS  Google Scholar 

  16. Maulbecker, C.C. & Gruss, P. The oncogenic potential of Pax genes. EMBO J. 12, 2361–2367 (1993).

    Article  CAS  Google Scholar 

  17. Steinbach, J.P., Kozmik, Z., Pfeffer, P. & Aguzzi A. Overexpression of Pax5 is not sufficient for neoplastic transformation of mouse neuroectoderm. Int. J. Cancer 15, 459–467 (2001).

    Article  Google Scholar 

  18. Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061 (1993).

    Article  CAS  Google Scholar 

  19. Epstein, J. et al. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022–2034 (1994).

    Article  CAS  Google Scholar 

  20. Kozmik, Z., Czerny, T. & Busslinger, M. Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16, 6793–6803 (1997).

    Article  CAS  Google Scholar 

  21. Cavodeassi, F., Diez del Corral, R., Campuzano, S. & Dominguez, M. Compartments and organizing boundaries in the Drosophila eye: the role of the homeodomain Iroquois proteins. Development 126, 4933–4942 (1999).

    CAS  Google Scholar 

  22. Yang, C., Simon, M.A. & McNeill, H. mirror controls planar polarity and equator formation through repression of fringe expression and through control of cell affinities. Development 126, 5857–5866 (1999).

    CAS  Google Scholar 

  23. Cho, K.O. & Choi, K.W. Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396, 272–276 (1998).

    Article  CAS  Google Scholar 

  24. Dominguez, M. & de Celis, J.F. A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396, 276–278 (1998).

    Article  CAS  Google Scholar 

  25. Papayannopoulos, V., Tomlinson, A., Panin, V.M., Rauskolb, C. & Irvine, K.D. Dorsal-ventral signaling in the Drosophila eye. Science 281, 2031–2034 (1998).

    Article  CAS  Google Scholar 

  26. Quiring, R., Walldorf, U., Kloter, U. & Gehring, W.J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265, 785–789 (1994).

    Article  CAS  Google Scholar 

  27. Czerny, T. et al. Twin of eyeless, a second Pax-6 gene in Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell 3, 297–307 (1999).

    Article  CAS  Google Scholar 

  28. Halder, G., Callaerts, P. & Gehring, W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).

    Article  CAS  Google Scholar 

  29. Onuma, Y., Takahashi, S., Asashima, M., Kurata, S. & Gehring W.J. Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc. Natl. Acad. Sci. USA 99, 2020–2025(2002).

    Article  CAS  Google Scholar 

  30. Jun, S., Wallen, R.V., Goriely, A., Kalionis, B. & Desplan, C. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition. Proc. Natl. Acad. Sci. USA 95, 13720–13725 (1998).

    Article  CAS  Google Scholar 

  31. Jang, C.C. et al. Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 130, 2939–2951 (2003).

    Article  CAS  Google Scholar 

  32. Hazelett, D.J., Bourouis, M., Walldorf, U. & Treisman, J.E. decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125, 3741–3751 (1998).

    CAS  Google Scholar 

  33. Heberlein, U. & Treisman, J.E. Early retinal development in Drosophila. Fini 2000, 37–50 (2000).

    Google Scholar 

  34. Kurata, S., Go, M.J., Artavanis-Tsakonas, S. & Gehring, W.J. Notch signaling and the determination of appendage identity. Proc. Natl. Acad. Sci. USA 97, 2117–2122 (2000).

    Article  CAS  Google Scholar 

  35. Kumar, J.P. & Moses, K. EGR Receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104, 687–697 (2001).

    Article  CAS  Google Scholar 

  36. Go, M.J., Eastman, D.S. & Artavanis-Tsakonas, S. Cell proliferation control by Notch signaling in Drosophila development. Development 125, 2031–2040 (1998).

    CAS  Google Scholar 

  37. Aldaz, S., Morata, G. & Azpiazu, N. The Pax-homeobox gene eyegone is involved in the subdivision of the thorax of Drosophila. Development 130, 4473–4482 (2003).

    Article  CAS  Google Scholar 

  38. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  39. Callaerts, P. et al. Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 46, 73–88 (2001).

    Article  CAS  Google Scholar 

  40. Kronhamn, J. et al. Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129, 1015–1026 (2002).

    CAS  Google Scholar 

  41. Panganiban, G. & Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371–4386 (2002).

    CAS  Google Scholar 

  42. Day, S.J. & Lawrence, P.A. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2000).

    CAS  Google Scholar 

  43. Brook, W., Diaz-Benjumea, F. & Cohen, S. Organizing spatial pattern in limb development. Annu. Rev. Cell Dev. Biol. 12, 161–180 (1996).

    Article  CAS  Google Scholar 

  44. Serrano, N. & O'Farrell, P.H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, 186–195 (1997).

    Article  Google Scholar 

  45. Azuma, N. et al. Missense mutation in the alternative splice region of the PAX6 gene in eye anomalies. Am. J. Hum. Genet. 65, 656–663 (1999).

    Article  CAS  Google Scholar 

  46. Sepp, K.J. & Auld, V.J. Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics 151, 1093–1101 (1999).

    CAS  Google Scholar 

  47. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  48. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  Google Scholar 

  49. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  Google Scholar 

  50. Morata, G. & Ripoll, P. Minutes: Mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Azpiazu, V. van Heyningen, H. Sun, S. Bray, J. Treisman, A. Baonza, A. Carmena, J. Casal and P. Callaerts for reagents; Bloomington Stock Center for fly stocks; Developmental Studies Hybridoma Bank for antibodies; I. Gutierrez-García, E. Ballesta-Illan and M. Northcote for technical assistance; and P. A. Lawrence, M. Freeman, D. Page, L. A. Garcia-Alonso, M. Millan, F. Casares and F. Viana for critical reading of the manuscript. Part of this work was done in the laboratory of P. A. Lawrence at the Medical Research Council Laboratory of Molecular Biology in Cambridge (UK). This work was supported by grants from Fondo de Investigaciones Sanitarias and Ministerio de Ciencia y Tecnología from Spain and by a European Molecular Biology Organisation Young Investigator Award to M.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dominguez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez, M., Ferres-Marco, D., Gutierrez-Aviño, F. et al. Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet 36, 31–39 (2004). https://doi.org/10.1038/ng1281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing