Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX3 is required during the formation of the hypothalamo-pituitary axis

Abstract

The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke's pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke's pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional targeted inactivation of Sox3.
Figure 2
Figure 3: Gonadal histology, pituitary hormone levels and growth hormone immunohistochemistry.
Figure 4: Abnormal morphogenesis of the hypothalamus, pituitary and midline CNS structures in Sox3 mutant mice.
Figure 5: Altered domains of expression of Fgf8 and Bmp4 during early development of the pituitary in Sox3 mutants.
Figure 6: GFP expression from Sox3Δgfp in XY hemizygous and XX heterozygous embryos and pituitary defects in heterozygotes.
Figure 7: Proliferation in the infundibulum and hypothalamic region of XX heterozygous Sox3Δgfp embryos.
Figure 8: Histological analysis and GFP immunofluorescence of the hypothalamus in the postnatal brain of Sox3 mutants.

Similar content being viewed by others

References

  1. Dasen, J.S. & Rosenfeld, M.G. Signaling and transcriptional mechanisms in pituitary development. Annu. Rev. Neurosci. 24, 327–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10, 60–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Ericson, J., Norlin, S., Jessell, T.M. & Edlund, T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125, 1005–1015 (1998).

    CAS  PubMed  Google Scholar 

  4. Treier, M. et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 12, 1691–1704 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schepers, G.E., Teasdale, R.D. & Koopman, P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 3, 167–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Laumonnier, F. et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am. J. Hum. Genet. 71, 1450–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stevanovic, M., Lovell-Badge, R., Collignon, J. & Goodfellow, P.N. SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2013–2018 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Zucchi, I. et al. Transcription map of Xq27: candidates for several X-linked diseases. Genomics 57, 209–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Collignon, J. Study of a new family of genes related to the mammalian testis determining gene. (University of London, 1992).

    Google Scholar 

  10. Foster, J.W. & Graves, J.A. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl. Acad. Sci. USA 91, 1927–1931 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collignon, J. et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509–520 (1996).

    CAS  PubMed  Google Scholar 

  12. Wood, H.B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Uchikawa, M., Kamachi, Y. & Kondoh, H. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech. Dev. 84, 103–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Zernicka-Goetz, M. & Pines, J. Use of Green Fluorescent Protein in mouse embryos. Methods 24, 55–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lewandoski, M., Meyers, E.N. & Martin, G.R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Graves, J. Interactions between SRY and SOX genes in mammalian sex determination. BioEssays 20, 264–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kendall, S.K., Samuelson, L.C., Saunders, T.L., Wood, R.I. & Camper, S.A. Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice. Genes Dev. 9, 2007–2019 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. McGuinness, L. et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology 144, 720–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Thor, S., Ericson, J., Brannstrom, T. & Edlund, T. The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7, 881–889 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Shibusawa, N. et al. Requirement of thyrotropin-releasing hormone for the postnatal functions of pituitary thyrotrophs: ontogeny study of congenital tertiary hypothyroidism in mice. Mol. Endocrinol. 14, 137–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, S.C. et al. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364, 208–213 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Dattani, M.T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Weiss, J. et al. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol. Cell. Biol. 23, 8084–8091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Overton, P.M., Meadows, L.A., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129, 4219–4228 (2002).

    CAS  PubMed  Google Scholar 

  26. Uwanogho, D. et al. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Mayo, K.E. et al. Regulation of the pituitary somatotroph cell by GHRH and its receptor. Recent Prog. Horm. Res. 55, 237–67 (2000).

    CAS  PubMed  Google Scholar 

  28. Solomon, N.M. et al. Increased gene dosage at Xq26-q27 is associated with X-linked hypopituitarism. Genomics 79, 553–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Lindsay, R., Feldkamp, M., Harris, D., Robertson, J. & Rallison, M. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency. J. Pediatr. 125, 29–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McMahon, A.P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Kaufman, M.H. The Atlas of Mouse Development. (Academic, London, 1994).

    Google Scholar 

  33. Avilion, A.A., Bell, D.M. & Lovell-Badge, R. Micro-capillary tube in situ hybridisation: a novel method for processing small individual samples. Genesis 27, 76–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Dunwoodie, S.L., Henrique, D., Harrison, S.M. & Beddington, R.S. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    CAS  PubMed  Google Scholar 

  35. Parsons, M. A functional analysis of Sox3, an X-linked Sry related gene. (University of London, 1997).

    Google Scholar 

  36. Jones, C.M., Lyons, K.M. & Hogan, B.L. Expression of TGF-beta-related genes during mouse embryo whisker morphogenesis. Ann. NY Acad. Sci. 642, 339–345 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Martinez-Barbera, J.P. et al. Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 128, 4789–4800 (2001).

    CAS  PubMed  Google Scholar 

  38. Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Flavell, D.M. et al. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons. EMBO J. 15, 3871–3879 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Snedecor, G. & Cochran, W. Statistical Methods. (1967).

    Google Scholar 

Download references

Acknowledgements

We thank I. Harragan and W. Hatton for assistance with histology, J. Turner and P. Burgoyne for sharing their expertise in gonadal phenotypes, D. Whittcut and P. Mealyer for taking good care of the mouse colony, L. Dubois and J.-P. Vincent for critical reading of the manuscript and C. Wise and other members of the laboratory for their help and encouragement. This work was supported by the MRC, by a European Union Network Grant and the Louis Jeantet Foundation and by Marie Curie Postdoctoral Fellowships to K.R. and S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Lovell-Badge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzoti, K., Brunelli, S., Carmignac, D. et al. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36, 247–255 (2004). https://doi.org/10.1038/ng1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing