Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke

Abstract

We mapped a gene predisposing to myocardial infarction to a locus on chromosome 13q12–13. A four-marker single-nucleotide polymorphism (SNP) haplotype in this locus spanning the gene ALOX5AP encoding 5-lipoxygenase activating protein (FLAP) is associated with a two times greater risk of myocardial infarction in Iceland. This haplotype also confers almost two times greater risk of stroke. Another ALOX5AP haplotype is associated with myocardial infarction in individuals from the UK. Stimulated neutrophils from individuals with myocardial infarction produce more leukotriene B4, a key product in the 5-lipoxygenase pathway, than do neutrophils from controls, and this difference is largely attributed to cells from males who carry the at-risk haplotype. We conclude that variants of ALOX5AP are involved in the pathogenesis of both myocardial infarction and stroke by increasing leukotriene production and inflammation in the arterial wall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of the chromosome 13 linkage region showing ALOX5AP.
Figure 2: Pairwise LD between SNPs in a 60-kb region encompassing ALOX5AP.
Figure 3: LTB4 production of ionomycin-stimulated neutrophils from individuals with myocardial infarction (n = 41) and controls (n = 35).

Similar content being viewed by others

References

  1. Bonow, R.O., Smaha, L.A., Smith, S.C. Jr., Mensah, G.A. & Lenfant, C. World Heart Day 2002: the international burden of cardiovascular disease: responding to the emerging global epidemic. Circulation 106, 1602–1605 (2002).

    Article  PubMed  Google Scholar 

  2. Heart Disease and Stroke Statistics, 2003 Update (American Heart Association, Dallas, Texas, 2002).

  3. Lusis, A.J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Stratford, N., Britten, K. & Gallagher, P. Inflammatory infiltrates in human coronary atherosclerosis. Atherosclerosis 59, 271–276 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Poole, J.C. & Florey, H.W. Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. J. Pathol. Bacteriol. 75, 245–251 (1958).

    Article  CAS  PubMed  Google Scholar 

  7. Topol, E.J. et al. Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104, 2641–2644 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ozaki, K. et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yamada, Y. et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N. Engl. J. Med. 347, 1916–1923 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Broeckel, U. et al. A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat. Genet. 30, 210–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Francke, S. et al. A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum. Mol. Genet. 10, 2751–2765 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Harrap, S.B. et al. Genome-wide linkage analysis of the acute coronary syndrome suggests a locus on chromosome 2. Arterioscler. Thromb. Vasc. Biol. 22, 874–878 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Pajukanta, P. et al. Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland. Am. J. Hum. Genet. 67, 1481–1493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L., Fan, C., Topol, S.E., Topol, E.J. & Wang, Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302, 1578–1581 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dixon, R.A. et al. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282–284 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Mehrabian, M. et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res. 91, 120–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Brezinski, D.A., Nesto, R.W. & Serhan, C.N. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 86, 56–63 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Spanbroek, R. et al. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc. Natl. Acad. Sci. USA 100, 1238–1243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J. Clin. Epidemiol. 41, 105–14 (1988).

  20. Koshino, T. et al. Novel polymorphism of the 5-lipoxygenase activating protein (FLAP) promoter gene associated with asthma. Mol. Cell. Biol. Res. Commun. 2, 32–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Sala, A., Bolla, M., Zarini, S., Muller-Peddinghaus, R. & Folco, G. Release of leukotriene A4 versus leukotriene B4 from human polymorphonuclear leukocytes. J. Biol. Chem. 271, 17944–17948 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Dahinden, C.A., Clancy, R.M., Gross, M., Chiller, J.M. & Hugli, T.E. Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4. Proc. Natl. Acad. Sci. USA 82, 6632–6636 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fiore, S. & Serhan, C.N. Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils. J. Exp. Med. 172, 1451–1457 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Ford-Hutchinson, A.W. Leukotriene B4 in inflammation. Crit. Rev. Immunol. 10, 1–12 (1990).

    CAS  PubMed  Google Scholar 

  25. Samuelsson, B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568–575 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Burke, J.A., Levi, R., Guo, Z.G. & Corey, E.J. Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro. J. Pharmacol. Exp. Ther. 221, 235–241 (1982).

    CAS  PubMed  Google Scholar 

  27. Roth, D.M. & Lefer, A.M. Studies on the mechanism of leukotriene induced coronary artery constriction. Prostaglandins 26, 573–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Wargovich, T., Mehta, J., Nichols, W.W., Pepine, C.J. & Conti, C.R. Reduction in blood flow in normal and narrowed coronary arteries of dogs by leukotriene C4. J. Am. Coll. Cardiol. 6, 1047–1051 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Falk, E., Shah, P.K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Dwyer, J.H. et al. Arachidonate 5-Lipoxygenase Promoter Genotype, Dietary Arachidonic Acid, and Atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Aiello, R.J. et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler. Thromb. Vasc. Biol. 22, 443–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat. Genet. 35, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Gretarsdottir, S. et al. Localization of a susceptibility gene for common forms of stroke to 5q12. Am. J. Hum. Genet. 70, 593–603 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gudmundsson, G. et al. Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. Am. J. Hum. Genet. 70, 586–592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gulcher, J.R., Kristjansson, K., Gudbjartsson, H. & Stefansson, K. Protection of privacy by third-party encryption in genetic research in Iceland. Eur. J. Hum. Genet. 8, 739–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kong, A. & Cox, N.J. Allele-sharing models: LOD scores and accurate linkage tests. Am. J. Hum. Genet. 61, 1179–1188 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kong, A. et al. A high-resolution recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Whittemore, A.S. & Halpern, J. A class of tests for linkage using affected pedigree members. Biometrics 50, 118–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicolae, D. Allele Sharing Models in Gene Mapping: A Likelihood Approach (University of Chicago, 1999).

    Google Scholar 

  42. Dempster, A., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).

    Google Scholar 

  43. Terwilliger, J.D. & Ott, J. A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum. Hered. 42, 337–346 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Falk, C.T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. Hum. Genet. 51 Pt 3, 227–233 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Lewontin, R.C. The interaction of selection and linkage. ii. Optimum models. Genetics 50, 757–782 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hill, W.G. & Robertson, A. The effects of inbreeding at loci with heterozygote advantage. Genetics 60, 615–628 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X., Zehnbauer, B., Gnirke, A. & Kwok, P.Y. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc. Natl. Acad. Sci. USA 94, 10756–10761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steeds, R., Adams, M., Smith, P., Channer, K. & Samani, N.J. Distribution of tissue plasminogen activator insertion/deletion polymorphism in myocardial infarction and control subjects. Thromb. Haemost. 79, 980–984 (1998).

    CAS  PubMed  Google Scholar 

  49. Brouilette, S., Singh, R.K., Thompson, J.R., Goodall, A.H. & Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23, 842–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. Circulation 59, 607–609 (1979).

Download references

Acknowledgements

We thank the affected individuals and their families whose contribution made this study possible and the nurses at the Icelandic Heart Association, personnel at the deCODE core facilities, T. Jonsdottir, F. Runarsson, E. Palsdottir, J. Kostic, K. Channer, R. Steeds, R. Singh and P. Braund for their contributions. N.J.S. is supported by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Stefansson.

Ethics declarations

Competing interests

Some authors are employed by deCODE genetics, and some of them own stock options in the company

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helgadottir, A., Manolescu, A., Thorleifsson, G. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 36, 233–239 (2004). https://doi.org/10.1038/ng1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing