Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations

Abstract

The molecular mechanisms by which different mutations in the same gene can result in distinct disease phenotypes remain largely unknown. Truncating mutations of SOX10 cause either a complex neurocristopathy designated PCWH or a more restricted phenotype known as Waardenburg-Shah syndrome (WS4; OMIM 277580). Here we report that although all nonsense and frameshift mutations that cause premature termination of translation generate truncated SOX10 proteins with potent dominant-negative activity, the more severe disease phenotype, PCWH, is realized only when the mutant mRNAs escape the nonsense-mediated decay (NMD) pathway. We observe similar results for truncating mutations of MPZ that convey distinct myelinopathies. Our experiments show that triggering NMD and escaping NMD may cause distinct neurological phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brain MRI, SOX10 mutations in families with PCWH, distribution of SOX10 mutations and genotype-phenotype correlation.
Figure 2: Transcription assays of SOX10 mutant proteins.
Figure 3: DNA-binding studies of SOX10 mutant proteins.
Figure 4: Nonsense-mediated decay assays of SOX10.
Figure 5: Genotype-phenotype correlation and NMD assays of MPZ.

Similar content being viewed by others

References

  1. Inoue, K., Tanabe, Y. & Lupski, J.R. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann. Neurol. 46, 313–318 (1999).

    Article  CAS  Google Scholar 

  2. Inoue, K. et al. Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann. Neurol. 52, 836–842 (2002).

    Article  CAS  Google Scholar 

  3. Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237–250 (1998).

    Article  CAS  Google Scholar 

  4. Herbarth, B. et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl. Acad. Sci. USA 95, 5161–5165 (1998).

    Article  CAS  Google Scholar 

  5. Southard-Smith, E.M., Kos, L. & Pavan, W.J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64 (1998).

    Article  CAS  Google Scholar 

  6. Sonnenberg-Riethmacher, E. et al. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10. Mech. Dev. 109, 253–265 (2001).

    Article  CAS  Google Scholar 

  7. Stolt, C.C. et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165–170 (2002).

    Article  CAS  Google Scholar 

  8. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  Google Scholar 

  9. Pingault, V. et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. Genet. 18, 171–173 (1998).

    Article  CAS  Google Scholar 

  10. Southard-Smith, E.M. et al. The Sox10Dom mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res. 9, 215–225 (1999).

    CAS  PubMed  Google Scholar 

  11. Pingault, V. et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum. Genet. 111, 198–206 (2002).

    Article  CAS  Google Scholar 

  12. Omenn, G.S. & McKusick, V.A. The association of Waardenburg syndrome and Hirschsprung megacolon. Am. J. Med. Genet. 3, 217–223 (1979).

    Article  CAS  Google Scholar 

  13. Warner, L.E. et al. Clinical phenotypes of different MPZ (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 17, 451–460 (1996).

    Article  CAS  Google Scholar 

  14. Pingault, V. et al. Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental 'neural crest syndrome' related to a SOX10 mutation. Ann. Neurol. 48, 671–676 (2000).

    Article  CAS  Google Scholar 

  15. Jacobs, J.M. & Wilson, J. An unusual demyelinating neuropathy in a patient with Waardenburg's syndrome. Acta Neuropathol. 83, 670–674 (1992).

    Article  CAS  Google Scholar 

  16. Touraine, R.L. et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 66, 1496–1503 (2000).

    Article  CAS  Google Scholar 

  17. Sham, M.H., Lui, V.C.H., Chen, B.L.S., Fu, M. & Tam, P.K.H. Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome. J. Med. Genet. 38, E30 (2001).

    Article  CAS  Google Scholar 

  18. Bondurand, N. et al. A molecular analysis of the Yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum. Mol. Genet. 8, 1785–1789 (1999).

    Article  CAS  Google Scholar 

  19. Toki, F. et al. Intestinal agangliosis associated with the Waardenburg syndrome: report of two cases and review of the literature. Pediatr. Surg. Int. 19, 725–728 (2003).

    Article  Google Scholar 

  20. Bondurand, N. et al. Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum. Mol. Genet. 10, 2783–2795 (2001).

    Article  CAS  Google Scholar 

  21. Kuhlbrodt, K. et al. Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J. Biol. Chem. 273, 23033–23038 (1998).

    Article  CAS  Google Scholar 

  22. Carter, M.S., Li, S. & Wilkinson, M.F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965–5975 (1996).

    Article  CAS  Google Scholar 

  23. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  Google Scholar 

  24. Carter, M.S. et al. A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J. Biol. Chem. 270, 28995–29003 (1995).

    Article  CAS  Google Scholar 

  25. Saifi, G.M., Szigeti, K., Snipes, G.J., Garcia, C.A. & Lupski, J.R. Molecular mechanisms, diagnosis, and rational approaches to management and therapy for Charcot-Marie-Tooth disease and related peripheral neuropathies. J. Investig. Med. 51, 261–283 (2003).

    Article  CAS  Google Scholar 

  26. Wong, M-H. & Filbin, M.T. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain. J. Cell Biol. 134, 1531–1541 (1996).

    Article  CAS  Google Scholar 

  27. Mendell, J.T., ap Rhys, C.M.J. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002).

    Article  CAS  Google Scholar 

  28. Frischmeyer, P.A. & Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

    Article  CAS  Google Scholar 

  29. Mendell, J.T. & Dietz, H.C. When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107, 411–414 (2001).

    Article  CAS  Google Scholar 

  30. Byers, P.H. Killing the messenger: new insights into nonsense-mediated mRNA decay. J. Clin. Invest. 109, 3–6 (2002).

    Article  CAS  Google Scholar 

  31. Körkkö, J. et al. Analysis of the COL1A1 and COL1A2 genes by PCR amplification and scanning by conformation-sensitive gel electrophoresis identifies only COL1A1 mutations in 15 patients with osteogenesis imperfecta type I: identification of common sequences of null-allele mutations. Am. J. Hum. Genet. 62, 98–110 (1998).

    Article  Google Scholar 

  32. Snead, M.P. & Yates, J.R.W. Clinical and Molecular genetics of Stickler syndrome. J. Med. Genet. 36, 353–359 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dietz, H.C. et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17, 468–475 (1993).

    Article  CAS  Google Scholar 

  34. Schrijver, I. et al. Premature termination mutations in FBN1: distinct effects on differential allelic expression and on protein and clinical phenotypes. Am. J. Hum. Genet. 71, 223–237 (2002).

    Article  CAS  Google Scholar 

  35. Baserga, S.J. & Benz, E.J. Jr. Nonsense mutations in the human β-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. USA 85, 2056–2060 (1988).

    Article  CAS  Google Scholar 

  36. Forget, B.G., Benz, E.J., Jr., Skoultchi, A., Baglioni, C. & Housman, D. Absence of messenger RNA for β globin chain in β0-thalassaemia. Nature 247, 379–381 (1974).

    Article  CAS  Google Scholar 

  37. Shames, I., Fraser, A., Colby, J., Orfali, W. & Snipes, G.J. Phenotypic differences between peripheral myelin protein-22 (PMP22) and myelin protein zero (P0) mutations associated with Charcot-Marie-Tooth-related diseases. J. Neuropathol. Exp. Neurol. 62, 751–764 (2003).

    Article  CAS  Google Scholar 

  38. Yoshida, M. & Colman, D.R. Rapid functional analysis in Xenopus oocytes of Po protein adhesive interactions. Neurochem. Res. 26, 703–712 (2001).

    Article  CAS  Google Scholar 

  39. Edery, P. et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat. Genet. 12, 442–444 (1996).

    Article  CAS  Google Scholar 

  40. Puffenberger, E.G. et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 79, 1257–1266 (1994).

    Article  CAS  Google Scholar 

  41. Kerr, T.P., Sewry, C.A., Robb, S.A. & Roberts, R.G. Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum. Genet. 109, 402–407 (2001).

    Article  CAS  Google Scholar 

  42. Medghalchi, S.M. et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 10, 99–105 (2001).

    Article  CAS  Google Scholar 

  43. Peirano, R.I., Goerich, D.E., Riethmacher, D. & Wegner, M. Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol. Cell. Biol. 20, 3198–3209 (2000).

    Article  CAS  Google Scholar 

  44. Wang, J., Gudikote, J.P., Olivas, O.R. & Wilkinson, M.F. Boundary-independent polar nonsense-mediated decay. EMBO Rep. 3, 274–279 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for their cooperation; M. Quanrud for collecting blood samples from family members; T. Shimotake and Y. Tsuchida for providing clinical information; R. Peirano and E. Sock for advice and assistance; and A. Beaudet, H. Bellen, K. Szigeti and H. Zoghbi for critical reviews. This study was supported in part by grants from the US National Institute for Neurological Disorders and Strokes, the US National Institutes of Health and the Muscular Dystrophy Association to J.R.L. K.I. was a fellow of the Charcot-Marie-Tooth Association when this study was initiated and is currently supported by a development grant from the Muscular Dystrophy Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R Lupski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Khajavi, M., Ohyama, T. et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36, 361–369 (2004). https://doi.org/10.1038/ng1322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing