Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19

Abstract

Hartnup disorder (OMIM 234500) is an autosomal recessive abnormality of renal and gastrointestinal neutral amino acid transport noted for its clinical variability. We localized a gene causing Hartnup disorder to chromosome 5p15.33 and cloned a new gene, SLC6A19, in this region. SLC6A19 is a sodium-dependent and chloride-independent neutral amino acid transporter, expressed predominately in kidney and intestine, with properties of system B0. We identified six mutations in SLC6A19 that cosegregated with disease in the predicted recessive manner, with most affected individuals being compound heterozygotes. The disease-causing mutations that we tested reduced neutral amino acid transport function in vitro. Population frequencies for the most common mutated SLC6A19 alleles are 0.007 for 517G → A and 0.001 for 718C → T. Our findings indicate that SLC6A19 is the long-sought gene that is mutated in Hartnup disorder; its identification provides the opportunity to examine the inconsistent multisystemic features of this disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion and voltage dependence and substrate specificity of SLC6A19 confirm that it has the predicted profile for system B0.
Figure 2: Inheritance of two different mutations of SLC6A19 in a single pedigree (pedigree 2) in which the son (2.3) and first daughter (2.4) have the Hartnup disorder hyperaminoaciduria phenotype.
Figure 3: Leucine transport activities in mutant SLC6A19 proteins.
Figure 4: Schematic representation of mutations in the system B0 transporter SLC6A19.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Baron, D.N., Dent, C.E., Harris, H., Hart, E.W. & Jepson, J.B. Hereditary pellagra-like skin rash with temporary cerebellar ataxia. Constant renal amino-aciduria. And other bizarre biochemical features. Lancet 2, 421 (1956).

    Article  Google Scholar 

  2. Scriver, C.R. Hartnup Disease: A Genetic Modification of intestinal and renal transport of certain neutral alpha-amino acids. N. Engl. J. Med. 273, 530–532 (1965).

    Article  CAS  Google Scholar 

  3. Levy, H.L. Hartnup disorder. in The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R. et al.) (4957–4969 McGraw Hill, New York, 2001).

    Google Scholar 

  4. Stevens, B.R., Ross, H.J. & Wright, E.M. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Membr. Biol. 66, 213–225 (1982).

    Article  CAS  Google Scholar 

  5. Munck, L.K. & Munck, B.G. Amino acid transport in the small intestine. Physiol. Res. 43, 335–345 (1994).

    CAS  PubMed  Google Scholar 

  6. Doyle, F.A. & McGivan, J.D. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim. Biophys. Acta 1104, 55–62 (1992).

    Article  CAS  Google Scholar 

  7. Souba, W.W., Pan, M. & Stevens, B.R. Kinetics of the sodium-dependent glutamine transporter in human intestinal cell confluent monolayers. Biochem. Biophys. Res. Commun. 188, 746–753 (1992).

    Article  CAS  Google Scholar 

  8. Mailliard, M.E., Stevens, B.R. & Mann, G.E. Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology 108, 888–910 (1995).

    Article  CAS  Google Scholar 

  9. Potter, S.J., Lu, A., Wilcken, B., Green, K. & Rasko, J.E. Hartnup disorder: polymorphisms identified in the neutral amino acid transporter SLC1A5. J. Inherit. Metab. Dis. 25, 437–448 (2002).

    Article  CAS  Google Scholar 

  10. Rasko, J.E.J., Battini, J.-L., Gottschalk, R.J., Mazo, I. & Miller, A.D. The RD114/simian type D retrovirus teceptor is a neutral amino acid transporter. Proc. Natl. Acad. Sci. USA 96, 2129–2134 (1999).

    Article  CAS  Google Scholar 

  11. Avissar, N.E., Ryan, C.K., Ganapathy, V. & Sax, H.C. Na(+)-dependent neutral amino acid transporter ATB(0) is a rabbit epithelial cell brush-border protein. Am. J. Physiol. Cell Physiol. 281, C963–C971 (2001).

    Article  CAS  Google Scholar 

  12. Verrey, F., Meier, C., Rossier, G. & Kuhn, L.C. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch. 440, 503–512 (2000).

    Article  CAS  Google Scholar 

  13. Chillaron, J., Roca, R., Valencia, A., Zorzano, A. & Palacin, M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am. J. Physiol. Renal Physiol. 281, F995–F1018 (2001).

    Article  CAS  Google Scholar 

  14. Wagner, C.A., Lang, F. & Broer, S. Function and structure of heterodimeric amino acid transporters. Am. J. Physiol. Cell Physiol. 281, C1077–C1093 (2001).

    Article  CAS  Google Scholar 

  15. Kekuda, R. et al. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J. Biol. Chem. 271, 18657–18661 (1996).

    Article  CAS  Google Scholar 

  16. Sloan, J.L. & Mager, S. Cloning and functional expression of a human Na(+) and Cl(−)-dependent neutral and cationic amino acid transporter B(0+). J. Biol. Chem. 274, 23740–23745 (1999).

    Article  CAS  Google Scholar 

  17. Broer, A. et al. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to hartnup disorder. J. Biol. Chem. 279, 24467–24476 (2004).

    Article  CAS  Google Scholar 

  18. Nozaki, J. et al. Homozygosity mapping to chromosome 5p15 of a gene responsible for Hartnup disorder. Biochem. Biophys. Res. Commun. 284, 255–260 (2001).

    Article  CAS  Google Scholar 

  19. Wasserman, J.C., Delpire, E., Tonidandel, W., Kojima, R. & Gullans, S.R. Molecular characterization of ROSIT, a renal osmotic stress-induced Na(+)-Cl(−)-organic solute cotransporter. Am. J. Physiol. 267, F688–F694 (1994).

    Article  CAS  Google Scholar 

  20. Nash, S.R. et al. Cloning, gene structure and genomic localization of an orphan transporter from mouse kidney with six alternatively-spliced isoforms. Receptors Channels 6, 113–128 (1998).

    CAS  PubMed  Google Scholar 

  21. Wilcken, B., Smith, A. & Brown, D.A. Urine screening for aminoacidopathies: is it beneficial? Results of a long-term follow-up of cases detected by screening one million babies. J. Pediatrics 97, 492–497 (1980).

    Article  CAS  Google Scholar 

  22. Pineda, M. et al. Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0, +AT. Biochem. J. 377, 665–674 (2004).

    Article  CAS  Google Scholar 

  23. Ward, C.L. & Kopito, R.R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25710–25718 (1994).

    CAS  PubMed  Google Scholar 

  24. Tarlow, M.J. et al. Absorption of amino acids and peptides in a child with a variant of Hartnup disease and coexistent coeliac disease. Arch. Dis. Child. 47, 798–803 (1972).

    Article  CAS  Google Scholar 

  25. Scriver, C.R. et al. The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am. J. Hum. Genet. 40, 401–412 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Broer, S. Xenopus laevis Oocytes. Methods Mol. Biol. 227, 245–258 (2003).

    CAS  PubMed  Google Scholar 

  27. Rahman, B., Schneider, H.P., Broer, A., Deitmer, J.W. & Broer, S. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry 38, 11577–11584 (1999).

    Article  CAS  Google Scholar 

  28. Kleta, R. et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. advance online publication, 1 August 2004 (doi:10.1038/ng1405).

Download references

Acknowledgements

The Australian Hartnup Consortium represented in this publication thanks B. Wilcken for undertaking the original neonatal screening program in NSW that facilitated this study. We thank D.I.K. Martin and A. Basten for critical reading of the manuscript; the participating families for their generous consent; and C. Ng, J. Lai, O.T. Ooi and S. Kowalzcuk for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E J Rasko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hartnup disorder pedigrees. (PDF 46 kb)

Supplementary Table 1

Regions containing candidates studied by linkage analysis. (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seow, H., Bröer, S., Bröer, A. et al. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36, 1003–1007 (2004). https://doi.org/10.1038/ng1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing