Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lifespan and mitochondrial control of neurodegeneration

Abstract

We examine the allometric (comparative scaling) relationships between rates of neurodegeneration resulting from equivalent mutations in a diverse group of genes from five mammalian species with different maximum lifespan potentials. In both retina and brain, rates of neurodegeneration vary by as much as two orders of magnitude and are strongly correlated with maximum lifespan potential and rates of formation of mitochondrial reactive oxygen and nitrogen species (RONS). Cell death in these disorders is directly or indirectly regulated by the intrinsic mitochondrial cell death pathway. Mitochondria are the main source of RONS production and integrate cellular stress signals to coordinate the intrinsic pathway. We propose that these two functions are intimately related and that steady-state RONS-mediated signaling or damage to the mitochondrial stress-integration machinery is the principal factor setting the probability of cell death in response to a diverse range of cellular stressors. This provides a new and unifying framework for investigating neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inherited neurodegeneration rates in the retina and brain in different species.
Figure 2: Rates of mitochondrial superoxide and hydrogen peroxide (H2O2) formation as a function of maximum LSP.
Figure 3: Species differences in rates of neurodegeneration suggest that constitutive RONS production has a profound influence on the mitochondrial regulation of apoptosis.

Similar content being viewed by others

References

  1. Mattson, M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000).

    Article  CAS  Google Scholar 

  2. Nijhawan, D., Honarpour, N. & Wang, X. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 23, 73–87 (2000).

    Article  CAS  Google Scholar 

  3. Reme, C.E., Grimm, C., Hafezi, F., Marti, A. & Wenzel, A. Apoptotic cell death in retinal degenerations. Prog. Retin. Eye Res. 17, 443–464 (1998).

    Article  CAS  Google Scholar 

  4. Abraham, M.C. & Shaham, S. Death without caspases, caspases without death. Trends Cell Biol. 14, 184–193 (2004).

    Article  CAS  Google Scholar 

  5. Clarke, G. et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199 (2000).

    Article  CAS  Google Scholar 

  6. Clarke, G., Lumsden, C.J. & McInnes, R.R. Inherited neurodegenerative diseases: the one-hit model of neurodegeneration. Hum. Mol. Genet. 10, 2269–2275 (2001).

    Article  CAS  Google Scholar 

  7. Daiger, S.P. Identifying retinal disease genes: how far have we come, how far do we have to go? Novartis Found. Symp. 255, 17–27 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rattner, A., Sun, H. & Nathans, J. Molecular genetics of human retinal disease. Annu. Rev. Genet. 33, 89–131 (1999).

    Article  CAS  Google Scholar 

  9. Pacione, L.R., Szego, M.J., Ikeda, S., Nishina, P.M. & McInnes, R.R. Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu. Rev. Neurosci. 26, 657–700 (2003).

    Article  CAS  Google Scholar 

  10. Wolf, B.B. & Green, D.R. Apoptosis: letting slip the dogs of war. Curr. Biol. 12, R177–R179 (2002).

    Article  CAS  Google Scholar 

  11. Newmeyer, D.D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    Article  CAS  Google Scholar 

  12. Danial, N.N. & Korsmeyer, S.J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  Google Scholar 

  13. LaVail, M.M. et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthalmol. Vis. Sci. 39, 592–602 (1998).

    CAS  PubMed  Google Scholar 

  14. Hafezi, F., Grimm, C., Simmen, B.C., Wenzel, A. & Reme, C.E. Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. Br. J. Ophthalmol. 84, 922–927 (2000).

    Article  CAS  Google Scholar 

  15. Yu, L., Lenardo, M.J. & Baehrecke, E.H. Autophagy and caspases: a new cell death program. Cell Cycle 3, 1124–1126 (2004).

    CAS  PubMed  Google Scholar 

  16. Halliwell, B. & Gutteridge, J.M.C. Free Radicals in Biology and Medicine 3rd edn. (Oxford University Press, Oxford, 1999).

    Google Scholar 

  17. Beckman, K.B. & Ames, B.N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    Article  CAS  Google Scholar 

  18. Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C. & Barja, G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Neurol. B 168, 149–158 (1998).

    CAS  Google Scholar 

  19. Gal, A., Apfelstedt-Sylla, E., Janecke, A.R. & Zrenner, E. Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog. Retinal Eye Res. 16, 51–79 (1997).

    Article  CAS  Google Scholar 

  20. Cideciyan, A.V. et al. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc. Natl. Acad. Sci. USA 95, 7103–7108 (1998).

    Article  CAS  Google Scholar 

  21. Schmidt-Nielsen, K. Scaling: Why Is Animal Size So Important? (Cambridge University Press, Cambridge, 1984).

    Book  Google Scholar 

  22. Sohal, R.S., Sevensson, I., Sohal, B.H. & Brunk, U.T. Superoxide anion radical production in different animal species. Mech. Ageing Dev. 49, 129–135 (1989).

    Article  CAS  Google Scholar 

  23. Sohal, R.S., Svensson, I. & Brunk, U.T. Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53, 209–215 (1990).

    Article  CAS  Google Scholar 

  24. Ku, H.-H., Brunk, U.T. & Sohal, R.S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15, 621–627 (1993).

    Article  CAS  Google Scholar 

  25. Barja, G. Mitochondrial free radical production and aging in mammals and birds. Ann. NY Acad. Sci. 854, 224–238 (1998).

    Article  CAS  Google Scholar 

  26. Ku, H.-H. & Sohal, R.S. Comparison of mitochondrial pro-oxidant generation and antioxidant defences between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech. Aging Dev. 72, 67–76 (1993).

    Article  CAS  Google Scholar 

  27. Dunnett, S.B. & Bjorklund, A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature 399 (Suppl), A32–A39 (1999).

    Article  CAS  Google Scholar 

  28. Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G.P. & Davies, S.W. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 8093–8097 (2000).

    Article  CAS  Google Scholar 

  29. Hulbert, A.J. & Else, P.L. Mechanisms underlying the cost of living in animals. Annu. Rev. Physiol. 62, 207–235 (2000).

    Article  CAS  Google Scholar 

  30. Pamplona, R., Barja, G. & Portero-Otin, M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann. NY Acad. Sci. 959, 476–490 (2002).

    Article  Google Scholar 

  31. Hulbert, A.J. & Else, P.L. Membranes as possible pacemakers of metabolism. J. Theor. Biol. 199, 257–274 (1999).

    Article  CAS  Google Scholar 

  32. Turner, N., Else, P.L. & Hulbert, A.J. Docosahexaenoic acid (DHA) content of membranes determines molecular acivity of the sodium pump: implications for disease states and metabolism. Naturwissenschaften 90, 521–523 (2003).

    Article  CAS  Google Scholar 

  33. Porter, R.K., Hulbert, A.J. & Brand, M.D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am. J. Physiol. 271, R1550–R1560 (1996).

    CAS  PubMed  Google Scholar 

  34. Partridge, L. Evolutionary biology and age-related mortality. in Between Zeus and the Salmon (eds. Wachter, K.W. & Finch, C.E.) 78–95 (National Academy Press, Washington, DC, 1997).

    Google Scholar 

  35. Sampayo, J.N., Gill, M.S. & Lithgow, G.J. Oxidative stress and aging—the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem. Soc. Trans. 31, 1305–1307 (2003).

    Article  CAS  Google Scholar 

  36. Antebi, A. Tipping the balance toward longevity. Dev. Cell. 6, 315–316 (2004).

    Article  CAS  Google Scholar 

  37. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA 101, 10042–10047 (2004).

    Article  CAS  Google Scholar 

  38. Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10 (Suppl), S18–S25 (2004).

    Article  Google Scholar 

  39. Boehning, D. et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. 5, 1051–1061 (2003).

    Article  CAS  Google Scholar 

  40. St-Pierre, J., Buckingham, J.A., Roebuck, S.J. & Brand, M.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784–44790 (2002).

    Article  CAS  Google Scholar 

  41. Shiva, S. et al. Redox signalling: from nitric oxide to oxidised lipids. in Free Radicals: Enzymology, Signalling and Disease (eds. Cooper, C.E., Wilson, M.T. & Darley-Usmar, V.M.) 107–120 (Portland, London, 2004).

    Google Scholar 

  42. Kamata, H. & Hirata, H. Redox regulation of cellular signalling. Cell. Signal. 11, 1–14 (1998).

    Article  Google Scholar 

  43. Echtay, K.S. et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22, 4103–4110 (2003).

    Article  CAS  Google Scholar 

  44. Adams, J.M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  Google Scholar 

  45. Ott, M., Robertson, J.D., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA 99, 1259–1263 (2002).

    Article  CAS  Google Scholar 

  46. Jauslin, M.L., Meier, T., Smith, R.A. & Murphy, M.P. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 17, 1972–1974 (2003).

    Article  CAS  Google Scholar 

  47. Echtay, K.S., Murphy, M.P., Smith, R.A., Talbot, D.A. & Brand, M.D. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J. Biol. Chem. 277, 47129–47135 (2002).

    Article  CAS  Google Scholar 

  48. Olshansky, S.J., Carnes, B.A. & Cassel, C. In search of Methuselah: estimating the upper limits to human longevity. Science 250, 634–640 (1990).

    Article  CAS  Google Scholar 

  49. Altman, P.L. & Dittmer, D.S. Biology Data Book 2nd edn. (FASEB, Bethesda, Maryland, 1972).

    Google Scholar 

  50. Comfort, A. The Biology of Senescence (Elsevier, New York, 1979).

    Google Scholar 

Download references

Acknowledgements

We thank M. Murphy and N. Hastie for critical reading and advice on the manuscript and S. B. Schwartz and E. A. M. Windsor for help with data analyses. We acknowledge the financial support of the British Retinitis Pigmentosa Society, Foundation Fighting Blindness, the US National Institutes of Health (National Eye Institute) and the Macula Vision Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F Wright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, A., Jacobson, S., Cideciyan, A. et al. Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36, 1153–1158 (2004). https://doi.org/10.1038/ng1448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing