Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice

Abstract

Here we present a strategy to determine the genetic basis of variance in complex phenotypes that arise from natural, as opposed to induced, genetic variation in mice. We show that a commercially available strain of outbred mice, MF1, can be treated as an ultrafine mosaic of standard inbred strains and accordingly used to dissect a known quantitative trait locus influencing anxiety. We also show that this locus can be subdivided into three regions, one of which contains Rgs2, which encodes a regulator of G protein signaling. We then use quantitative complementation to show that Rgs2 is a quantitative trait gene. This combined genetic and functional approach should be applicable to the analysis of any quantitative trait.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-marker and multipoint HAPPY QTL mapping in MF1 mice.
Figure 2: Reconstruction of MF1 haplotypes as inbred strain mosaics.

Similar content being viewed by others

References

  1. Flint, J. & Mott, R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet. 2, 438–445 (2001).

    Article  Google Scholar 

  2. Flint, J. Analysis of quantitative trait loci that influence animal behavior. J. Neurobiol. 54, 46–77 (2003).

    Article  CAS  Google Scholar 

  3. Gershenfeld, H.K. & Paul, S.M. Mapping quantitative trait loci for fear-like behaviors in mice. Genomics 46, 1–8 (1997).

    Article  CAS  Google Scholar 

  4. Turri, M.G., De Fries, J.C., Henderson, N.D. & Flint, J. Multivariate analysis of quantitative trait loci influencing variation in anxiety-related behavior in laboratory mice. Mamm. Genome 15, 69–76 (2004).

    Article  Google Scholar 

  5. Henderson, N.D., Turri, M.G., DeFries, J.C. & Flint, J. QTL analysis of multiple behavioral measures of anxiety in mice. Behav. Genet. 34, 267–293 (2004).

    Article  Google Scholar 

  6. Turri, M.G., Henderson, N.D., DeFries, J.C. & Flint, J. Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McClearn, G.E., Wilson, J.R. & Meredith, W. The use of isogenic and heterogenic mouse stocks in behavioral research. in Contributions to Behavior-Genetic Analysis: The Mouse as a Prototype (eds. Lindzey, G. & Thiessen, D.) 3–22 (Appleton Century Crofts, New York, 1970).

    Google Scholar 

  8. Mott, R., Talbot, C.J., Turri, M.G., Collins, A.C. & Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654 (2000).

    Article  Google Scholar 

  9. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nat. Genet. 21, 305–308 (1999).

    Article  CAS  Google Scholar 

  10. Yalcin, B. et al. Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc. Natl. Acad. Sci. USA 101, 9734–9739 (2004).

    Article  CAS  Google Scholar 

  11. Nobrega, M.A., Ovcharenko, I., Afzal, V. & Rubin, E.M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    Article  CAS  Google Scholar 

  12. Higgs, D.R. et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4, 1588–1601 (1990).

    Article  CAS  Google Scholar 

  13. Lettice, L.A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl. Acad. Sci. USA 99, 7548–7553 (2002).

    Article  CAS  Google Scholar 

  14. Aitman, T.J. et al. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat. Genet. 16, 197–201 (1997).

    Article  CAS  Google Scholar 

  15. Tafti, M. et al. Deficiency in short-chain fatty acid β-oxidation affects τ oscillations during sleep. Nat. Genet. 34, 320–325 (2003).

    Article  CAS  Google Scholar 

  16. Gross, C. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002).

    Article  CAS  Google Scholar 

  17. Lai, C., Lyman, R.F., Long, A.D., Langley, C.H. & Mackay, T.F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster . Science 266, 1697–1702 (1994).

    Article  CAS  Google Scholar 

  18. De Luca, M. et al. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat. Genet. 34, 429–433 (2003).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet. 34, 181–186 (2003).

    Article  CAS  Google Scholar 

  20. Helms, C. et al. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat. Genet. 35, 349–356 (2003).

    Article  CAS  Google Scholar 

  21. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  Google Scholar 

  22. Tokuhiro, S. et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35, 341–348 (2003).

    Article  CAS  Google Scholar 

  23. Long, A.D., Mullaney, S.L., Mackay, T.F.C. & Langley, C.H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster . Genetics 144, 1497–1510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinmetz, L.M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    Article  CAS  Google Scholar 

  25. Beck, J.A. et al. Genealogies of mouse inbred strains. Nat. Genet. 24, 23–25 (2000).

    Article  CAS  Google Scholar 

  26. Stephens, M. & Donnelly, P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).

    Article  CAS  Google Scholar 

  27. Stephens, M., Smith, N.J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    Article  CAS  Google Scholar 

  28. Talbot, C.J. et al. Fine scale mapping of a genetic locus for conditioned fear. Mamm. Genome 14, 223–230 (2003).

    Article  Google Scholar 

  29. Oliveira-Dos-Santos, A.J. et al. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc. Natl. Acad. Sci. USA 97, 12272–12277 (2000).

    Article  CAS  Google Scholar 

  30. Wade, C.M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002).

    Article  CAS  Google Scholar 

  31. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24, 381–386 (2000).

    Article  CAS  Google Scholar 

  32. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc. Natl. Acad. Sci. USA 100, 3380–3385 (2003).

    Article  CAS  Google Scholar 

  33. Hitzemann, R. et al. Multiple cross mapping (MCM) markedly improves the localization of a QTL for ethanol-induced activation. Genes Brain Behav. 1, 214–222 (2002).

    Article  CAS  Google Scholar 

  34. Plomin, R., McClearn, G.E., Gora-Maslak, G. & Neiderhiser, J.M. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav. Genet. 21, 99–116 (1991).

    Article  CAS  Google Scholar 

  35. Turri, M.G., Datta, S.R., DeFries, J., Henderson, N.D. & Flint, J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. 11, 725–734 (2001).

    Article  CAS  Google Scholar 

  36. Grafstein-Dunn, E., Young, K.H., Cockett, M.I. & Khawaja, X.Z. Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16, and GAIP messenger ribonucleic acids by in situ hybridization in rat brain. Brain Res. Mol. Brain Res. 88, 113–123 (2001).

    Article  CAS  Google Scholar 

  37. Dong, M.Q., Chase, D., Patikoglou, G.A. & Koelle, M.R. Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed. Genes Dev. 14, 2003–2014 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rahman, Z. et al. RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38, 941–952 (2003).

    Article  CAS  Google Scholar 

  39. Heximer, S.P. et al. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest. 111, 445–452 (2003).

    Article  CAS  Google Scholar 

  40. Huang, Z.P. et al. Expression of regulator of G-protein signalling protein 2 (RGS2) in the mouse uterus at implantation sites. Reproduction 126, 309–316 (2003).

    Article  CAS  Google Scholar 

  41. Legare, M.E., Bartlett, F.S. & Frankel, W.N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wanstrat, A. & Wakeland, E. The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat. Immunol. 2, 802–809 (2001).

    Article  Google Scholar 

  43. Fijneman, R.J., de Vries, S.S., Jansen, R.C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat. Genet. 14, 465–467 (1996).

    Article  CAS  Google Scholar 

  44. van Wezel, T., Ruivenkamp, C.A., Stassen, A.P., Moen, C.J. & Demant, P. Four new colon cancer susceptibility loci, Scc6 to Scc9 in the mouse. Cancer Res. 59, 4216–4218 (1999).

    CAS  PubMed  Google Scholar 

  45. Mackay, T.F. The genetic architecture of quantitative traits: lessons from Drosophila . Curr. Opin. Genet. Dev. 14, 253–257 (2004).

    Article  CAS  Google Scholar 

  46. Flint, J., De Fries, J.C. & Henderson, N.D. Little epistasis for anxiety-related measures in the DeFries strains of laboratory mice. Mamm. Genome 15, 77–82 (2004).

    Article  Google Scholar 

  47. Contet, C., Rawlins, J.N. & Deacon, R.M. A comparison of 129S2/SvHsd and C57BL/6JOlaHsd mice on a test battery assessing sensorimotor, affective and cognitive behaviours: implications for the study of genetically modified mice. Behav. Brain. Res. 124, 33–46 (2001).

    Article  CAS  Google Scholar 

  48. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank J. Penninger for providing the Rgs2-mutant mice and S. McCormick for comments on the manuscript. This work was funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Flint or Richard Mott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Comparison between C57BL6/J wild type (wt) and Rgs2 homozygous knockout (Mutant) mice. (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yalcin, B., Willis-Owen, S., Fullerton, J. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 36, 1197–1202 (2004). https://doi.org/10.1038/ng1450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing