Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells

Abstract

The mechanism of disease-associated trinucleotide repeat instability involves cis-acting factors (cis-elements) in the vicinity of the repeat, but the nature of these elements is unknown. One cis-element may be the location of the replication origin relative to the repeat. We have used an SV40 DNA replication system to investigate the effect of the location of replication initiation on (CTG)n•(CAG)n stability in primate cells. Depending on the distance between the SV40 replication origin and the repeat tract, templates with 79 repeats yield predominantly expansions or predominantly deletions or remain intact. All templates with 17 repeats are stable. Thus, cis-elements that affect the sites of Okazaki fragment initiation relative to the repeat are crucial determinants of instability. This model system recapitulates the bias for expansions observed in many of the diseases associated with trinucleotide repeats. Our results might explain the variable amounts of CTG/CAG instability that are observed in different chromosomal contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replication fork and replication templates.
Figure 2: Experimental strategy.
Figure 3: Representative example of STRIP analysis.
Figure 4: Mutation analysis.
Figure 5: Independent analyses of primate cell–replicated material.
Figure 6: Replication fork dynamics and instability of CTG and CAG repeats.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cummings, C.J & Zoghbi, H.Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9, 909–916 (2000).

    Article  CAS  Google Scholar 

  2. La Spada, A.R. Trinucleotide repeat instability: genetic features and molecular mechanisms. Brain Pathol. 7, 943–963 (1997).

    Article  CAS  Google Scholar 

  3. Martorell, L., Monckton, D.G., Sanchez, A., Lopez De Munain, A. & Baiget, M. Frequency and stability of the myotonic dystrophy type 1 premutation. Neurology 56, 328–335 (2001).

    Article  CAS  Google Scholar 

  4. Richards, R.I. & Sutherland, G.R. Heritable unstable DNA sequences. Nature Genet. 1, 7–9 (1992).

    Article  CAS  Google Scholar 

  5. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  Google Scholar 

  6. Wong, L.J., Ashizawa, T., Monckton, D.G., Caskey, C.T. & Richards, C.S. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am. J. Hum. Genet. 56, 114–122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martorell, L. et al. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 7, 307–312 (1998).

    Article  CAS  Google Scholar 

  8. Wohrle, D. et al. Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a casual involvement of methyl-directed DNA mismatch repair in triplet repeat stability. Hum. Mol. Genet. 4, 1147–1153 (1995).

    Article  CAS  Google Scholar 

  9. Ashizawa, T. et al. Instability of the expanded (CTG)n repeats in the myotonin protein kinase gene in cultured lymphoblastoid cell lines from patients with myotonic dystrophy. Genomics 36, 47–53 (1996).

    Article  CAS  Google Scholar 

  10. Ashizawa, T. et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 54, 414–423 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Richards, R.I. et al. Dynamic mutation loci: allele distributions in different populations. Ann. Hum. Genet. 60, 391–400 (1996).

    Article  CAS  Google Scholar 

  12. Imbert, G., Kretz, C., Johnson, K. & Mandel, J.L. Origin of the expansion mutation in myotonic dystrophy. Nature Genet. 4, 72–76 (1993).

    Article  CAS  Google Scholar 

  13. Neville, C.E., Mahadevan, M.S., Barcelo, J.M. & Korneluk, R.G. High resolution genetic analysis suggests one ancestral predisposing haplotype for the origin of the myotonic dystrophy mutation. Hum. Mol. Genet. 3, 45–51 (1994).

    Article  CAS  Google Scholar 

  14. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. Mol. Genet. 1, 255–258 (1992).

    Article  CAS  Google Scholar 

  15. Spiegel, R., La Spada, A.R., Kress, W., Fischbeck, K.H. & Schmid, W. Somatic stability of the expanded CAG trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Hum. Mutat. 8, 32–37 (1996).

    Article  CAS  Google Scholar 

  16. Gourdon, G. et al. Moderate intergenerational and somatic instability of a 55-CTG repeat in transgenic mice. Nature Genet. 15, 190–192 (1997).

    Article  CAS  Google Scholar 

  17. Monckton, D.G., Coolbaugh, M.I., Ashizawa, K.T., Siciliano, M.J. & Caskey, C.T. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nature Genet. 15, 193–196 (1997).

    Article  CAS  Google Scholar 

  18. Brock, G.J., Anderson, N.H. & Monckton, D.G. Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. Hum. Mol. Genet. 8, 1061–1067 (1999).

    Article  CAS  Google Scholar 

  19. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  20. Samadashwily, G.M., Raca, G. & Mirkin, S.M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304 (1997).

    Article  CAS  Google Scholar 

  21. Freudenreich, C.H., Stavenhagen, J.B. & Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17, 2090–2098 (1997).

    Article  CAS  Google Scholar 

  22. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  Google Scholar 

  23. Miret, J.J., Pessoa-Brandao, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  Google Scholar 

  24. Schweitzer, J.K. & Livingston, D.M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74 (1998).

    Article  CAS  Google Scholar 

  25. Anderson, S. & DePamphilis, M.L. Metabolism of Okazaki fragments during simian virus 40 DNA replication. J. Biol. Chem. 254, 11495–11504 (1979).

    CAS  PubMed  Google Scholar 

  26. Burhans, W.C., Vassilev, L.T., Caddle, M.S., Heintz, N.H. & DePamphilis, M.L. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62, 955–965 (1990).

    Article  CAS  Google Scholar 

  27. Tseng, B.Y., Erickson, J.M. & Goulian, M. Initiator RNA of nascent DNA from animal cells. J. Mol. Biol. 129, 531–545 (1979).

    Article  CAS  Google Scholar 

  28. DePamphilis, M.L. & Wassarman, P.M. Replication of eukaryotic chromosomes: a close-up of the replication fork. Annu. Rev. Biochem. 49, 627–666 (1980).

    Article  CAS  Google Scholar 

  29. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  Google Scholar 

  30. Hay, R.T. & DePamphilis, M.L. Initiation of SV40 DNA replication in vivo: location and structure of 5′ ends of DNA synthesized in the ori region. Cell 28, 767–779 (1982).

    Article  CAS  Google Scholar 

  31. Nethanel, T., Reisfeld, S., Dinter-Gottlieb, G. & Kaufmann, G., Okazaki piece of simian virus 40 may be synthesized by ligation of shorter precursor chains. J. Virol. 62, 2867–2873 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gordenin, D.A., Kunkel, T.A. & Resnick, M.A. Repeat expansion—all in a flap? Nature Genet. 16, 116–118 (1997).

    Article  CAS  Google Scholar 

  33. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  Google Scholar 

  34. Henricksen, L.A., Tom, S., Liu, Y. & Bambara, R.A. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16420–16427 (2000).

    Article  CAS  Google Scholar 

  35. Roberts, J.D. & Kunkel, T.A. Fidelity of a human cell DNA replication complex. Proc. Natl Acad. Sci. USA 85, 7064–7068 (1988).

    Article  CAS  Google Scholar 

  36. Pearson, C.E. & Sinden, R.R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry 35, 5041–5053 (1996).

    Article  CAS  Google Scholar 

  37. Pearson, C.E., Ewel, A., Acharya, S., Fishel, R.A. & Sinden, R.R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123 (1997).

    Article  CAS  Google Scholar 

  38. Pearson, C.E., Wang, Y.H., Griffith, J.D. & Sinden, R.R. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n.(CAG)n repeats from the myotonic dystro locus. Nucleic Acids Res. 26, 816–823 (1998).

    Article  CAS  Google Scholar 

  39. Gluzman, Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  CAS  Google Scholar 

  40. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  41. Vassilev, L. & Johnson, E.M. Evaluation of autonomous plasmid replication in transfected mammalian cells. Nucleic Acids Res. 16, 7742 (1988).

  42. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  Google Scholar 

  43. Constantinou, A. et al. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1, 80–84 (2000).

    Article  CAS  Google Scholar 

  44. Seigneur, M., Bidnenko, V., Ehrlich, S.D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  Google Scholar 

  45. Postow, L., Crisona, N.J., Peter, B.J., Hardy, C.D. & Cozzarelli, N.R. Topological challenges to DNA replication: conformations at the fork. Proc. Natl Acad. Sci. USA 98, 8219–8226 (2001).

    Article  CAS  Google Scholar 

  46. Manley, K., Shirley, T.L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473 (1999).

    Article  CAS  Google Scholar 

  47. Moore, H., Greenwell, P.W., Liu, C.P., Arnheim, N. & Petes, T.D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA 96, 1504–1509 (1999).

    Article  CAS  Google Scholar 

  48. Richard, G.F., Goellner, G.M., McMurray, C.T. & Haber, J.E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19, 2381–2390 (2000).

    Article  CAS  Google Scholar 

  49. Hay, R.T., Hendrickson, E.A. & DePamphilis, M.L. Sequence specificity for the initiation of RNA-primed simian virus 40 DNA synthesis in vivo. J. Mol. Biol. 175, 131–157 (1984).

    Article  CAS  Google Scholar 

  50. Griffith, J.D. & Christiansen, G. Electron microscope visualization of chromatin and other DNA-protein complexes. Annu. Rev. Biophys. Bioeng. 7, 19–35 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at The Hospital for Sick Children for comments and support, and A. Paterson for statistical analysis. This work was supported by grants from the Muscular Dystrophy Association USA and the Canadian Institutes of Health Research (CIHR) to C.E.P. and from the NIH and the March of Dimes to Y.-H.W. J.D.C. is supported by Natural Sciences and Engineering Research Council of Canada. C.E.P. is a CIHR Scholar, a Canadian Genetic Disease Network Scholar and a Premier's Research Excellence Award scholar. Y.-H.W. is a Basil O'Connor March of Dimes Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Pearson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleary, J., Nichol, K., Wang, YH. et al. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat Genet 31, 37–46 (2002). https://doi.org/10.1038/ng870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing