Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of CREB function in brain leads to neurodegeneration

Abstract

Control of cellular survival and proliferation is dependent on extracellular signals and is a prerequisite for ordered tissue development and maintenance. Activation of the cAMP responsive element binding protein (CREB) by phosphorylation has been implicated in the survival of mammalian cells. To define its roles in the mouse central nervous system, we disrupted Creb1 in brain of developing and adult mice using the Cre/loxP system. Mice with a Crem−/− background and lacking Creb in the central nervous system during development show extensive apoptosis of postmitotic neurons. By contrast, mice in which both Creb1 and Crem are disrupted in the postnatal forebrain show progressive neurodegeneration in the hippocampus and in the dorsolateral striatum. The striatal phenotype is reminiscent of Huntington disease and is consistent with the postulated role of CREB-mediated signaling in polyglutamine-triggered diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mice deficient for CREB in the nervous system.
Figure 2: Cellular integrity is compromised in brains of mice lacking both Creb and Crem.
Figure 3: Normal proliferation, but increased neuronal death, in mice lacking both CREB and CREM in brain.
Figure 4: Neuronal degeneration is initiated between E16.
Figure 5: Neurological and morphological phenotype of Creb1Camkcre4Crem−/− double-mutants.
Figure 6: The striatum and the hippocampus from Creb1Camkcre4Crem−/− double-mutants undergo progressive neurodegeneration.
Figure 7: Astrogliosis in striatum and hippocampus.
Figure 8: Striatal neurodegeneration in Creb1D1creCrem−/−mice.

Similar content being viewed by others

References

  1. Mattson, M.P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell. Biol. 1, 120–129 (2000).

    Article  CAS  Google Scholar 

  2. Shaywitz, A.J. & Greenberg, M.E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell. Biol. 2, 599–609 (2001).

    Article  CAS  Google Scholar 

  4. Silva, A.J., Kogan, J.H., Frankland, P.W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Jean, D., Harbison, M., McConkey, D.J., Ronai, Z. & Bar-Eli, M. CREB and its associated proteins act as survival factors for human melanoma cells. J. Biol. Chem. 273, 24884–24890 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Riccio, A., Ahn, S., Davenport, C.M., Blendy, J.A. & Ginty, D.D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Somers, J.P., DeLoia, J.A. & Zeleznik, A.J. Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Mol. Endocrinol. 13, 1364–1372 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Finkbeiner, S. CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Du, K. & Montminy, M. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377–32379 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Blendy, J.A., Kaestner, K.H., Schmid, W., Gass, P. & Schütz, G. Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 1098–1106 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hummler, E. et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl Acad. Sci. USA 91, 5647–5651 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rudolph, D. et al. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl Acad. Sci. USA 95, 4481–4486 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nantel, F. et al. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380, 159–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Blendy, J.A., Kaestner, K.H., Weinbauer, G.F., Nieschlag, E. & Schütz, G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380, 162–165 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature Genet. 23, 99–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Pugazhenthi, S. et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP- response element-binding protein. J. Biol. Chem. 275, 10761–10766 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Wilson, B.E., Mochon, E. & Boxer, L.M. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol. Cell. Biol. 16, 5546–5556 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van den Akker, E. et al. Targeted inactivation of Hoxb8 affects survival of a spinal ganglion and causes aberrant limb reflexes. Mech. Dev. 89, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Dragatsis, I., Levine, M.S. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genet. 26, 300–306 (2000).

    CAS  PubMed  Google Scholar 

  21. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lalonde, R. Motor abnormalities in weaver mutant mice. Exp. Brain Res. 65, 479–481 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Yamada, M. et al. Loss of hippocampal CA3 pyramidal neurons in mice lacking STAM1. Mol. Cell. Biol. 21, 3807–3819 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clarke, G. et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Shimohata, T. et al. Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genet. 26, 29–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nucifora, F.C. et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Steffan, J.S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97, 6763–6768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wyttenbach, A. et al. Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington's disease. Hum. Mol. Genet. 10, 1829–1845 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Bleckmann, S.C. et al. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol. Cell. Biol. 22, 1919–1925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantamadiotis, T., Taraviras, S., Tronche, F. & Schütz, G. PCR-based strategy for genotyping mice and ES cells harboring loxP sites. Biotechniques 25, 968–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Kellendonk, C. et al. Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Rossi, J.M. et al. Genomic analysis using a yeast artificial chromosome library with mouse DNA inserts. Proc. Natl Acad. Sci. USA 89, 2456–2460 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Birren, B., Green, E.D., Klapholz, S., Myers, R.M. & Roskams, J. (eds) Analyzing DNA (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank B. Stride, E. Greiner and K. Unsicker for critical reading of the manuscript; E. Schmid, S. Ridder, A. Klewe-Nebenius, H. Glaser, S. Fehsenfeld, K. Anlag and T. Panek for expert technical assistance and N. Pollet, I. del Barco Barrantes and E. Casanova for stimulating discussions. This work was supported by grants from the European Community and the Deutsches Forschungsgemeinschaft and Forschergruppe (to G.S.). T.L. was supported by fellowships from the Human Frontier Science Program Organization and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Schütz.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantamadiotis, T., Lemberger, T., Bleckmann, S. et al. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31, 47–54 (2002). https://doi.org/10.1038/ng882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing