Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina

An Erratum to this article was published on 01 August 2002

Abstract

A layered organization of cells is a common architectural feature of many neuronal formations. Mutations of the zebrafish gene nagie oko (nok) produce a severe disruption of retinal architecture, indicating a key role for this locus in neuronal patterning. We show that nok encodes a membrane-associated guanylate kinase-family scaffolding protein. Nok localizes to the vicinity of junctional complexes in retinal neuroepithelium and in the photoreceptor cell layer. Mosaic analysis indicates that the nok retinal patterning phenotype is not cell-autonomous. We propose that nok function in patterning of postmitotic neurons is mediated through neuroepithelial cells and is necessary for guiding neurons to their proper destinations in retinal laminae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nok phenotype in retina and brain.
Figure 2: Positional cloning of nagie oko.
Figure 3: Phenocopy and rescue of the nok phenotype.
Figure 4: Transcript and protein product localization of nok.
Figure 5: nok functions in a non–cell-autonomous manner in the patterning of the retina.

Similar content being viewed by others

References

  1. Feng, Y. et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

    CAS  PubMed  Google Scholar 

  2. Matsunaga, M., Hatta, K. & Takeichi, M. Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron 1, 289–295 (1988).

    CAS  PubMed  Google Scholar 

  3. Tomita, K. et al. Mammalian hairy and enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16, 723–734 (1996).

    CAS  PubMed  Google Scholar 

  4. Tomasiewicz, H. et al. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11, 1163–1174 (1993).

    CAS  PubMed  Google Scholar 

  5. Stumpo, D., Bock, C., Tuttle, J. & Blackshear, P. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Natl Acad. Sci. USA 92, 944–948 (1995).

    CAS  PubMed  Google Scholar 

  6. Georges-Labouesse, E., Mark, M., Messaddeq, N. & Gansmuller, A. Essential role of a6 integrins in cortical and retinal lamination. Curr. Biol. 8, 983–986 (1998).

    CAS  PubMed  Google Scholar 

  7. Dyer, M.A. & Cepko, C.L. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21, 4259–4271 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pujic, Z. & Malicki, J. Mutation of the zebrafish glass onion locus causes early cell-nonautonomous loss of neuroepithelial integrity followed by severe neuronal patterning defects in the retina. Dev. Biol. 234, 454–469 (2001).

    CAS  PubMed  Google Scholar 

  9. Malicki, J. & Driever, W. oko meduzy mutations affect neuronal patterning in the zebrafish retina and reveal cell-cell interactions of the retinal neuroepithelial sheet. Development 126, 1235–1246 (1999).

    CAS  PubMed  Google Scholar 

  10. Jensen, A.M., Walker, C. & Westerfield, M. mosaic eyes: a zebrafish gene required in pigmented epithelium for apical localization of retinal cell division and lamination. Development 128, 95–105 (2001).

    CAS  PubMed  Google Scholar 

  11. Malicki, J. et al. Mutations affecting development of the zebrafish retina. Development 123, 263–273 (1996).

    CAS  PubMed  Google Scholar 

  12. Dimitratos, S.D., Woods, D.F., Stathakis, D.G. & Bryant, P.J. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 21, 912–921 (1999).

    CAS  PubMed  Google Scholar 

  13. Woods, D. & Bryant, P. The disc-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  14. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    CAS  PubMed  Google Scholar 

  15. Peng, C.Y., Manning, L., Albertson, R. & Doe, C.Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    CAS  PubMed  Google Scholar 

  16. Lahey, T., Gorczyca, M., Jia, X.X. & Budnik, V. The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron 13, 823–835 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Marfatia, S.M., Morais-Cabral, J.H., Kim, A.C., Byron, O. & Chishti, A.H. The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. J. Biol. Chem. 272, 24191–24197 (1997).

    CAS  PubMed  Google Scholar 

  18. Hsueh, Y.P., Wang, T.F., Yang, F.C. & Sheng, M. Nuclear translocation and transcription regulation by the membrane- associated guanylate kinase CASK/LIN-2. Nature 404, 298–302 (2000).

    CAS  PubMed  Google Scholar 

  19. Hinds, J. & Hinds, P. Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Dev. Biol. 37, 381–416 (1974).

    CAS  PubMed  Google Scholar 

  20. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    CAS  PubMed  Google Scholar 

  21. Kamberov, E. et al. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 275, 11425–11431 (2000).

    CAS  PubMed  Google Scholar 

  22. Bachmann, A., Schneider, M., Theilenberg, E., Grawe, F. & Knust, E. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414, 638–643 (2001).

    CAS  PubMed  Google Scholar 

  23. Hong, Y., Stronach, B., Perrimon, N., Jan, L.Y. & Jan, Y.N. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 414, 634–638 (2001).

    CAS  PubMed  Google Scholar 

  24. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell. Biol. 136, 669–678 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nix, S.L., Chishti, A.H., Anderson, J.M. & Walther, Z. hCASK and hDlg associate in epithelia, and their src homology 3 and guanylate kinase domains participate in both intramolecular and intermolecular interactions. J. Biol. Chem. 275, 41192–41200 (2000).

    CAS  PubMed  Google Scholar 

  26. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  27. Dowling, J. The Retina (Harvard University Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  28. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    CAS  PubMed  Google Scholar 

  29. Hinds, J. & Hinds, P. Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis. J. Comp. Neur. 187, 495–512 (1979).

    CAS  PubMed  Google Scholar 

  30. Ho, R.K. & Kane, D.A. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348, 728–730 (1990).

    CAS  PubMed  Google Scholar 

  31. Westerfield, M. The Zebrafish Book (University of Oregon Press, Eugene, 2000).

    Google Scholar 

  32. Hu, M. & Easter, S.S. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207, 309–321 (1999).

    CAS  PubMed  Google Scholar 

  33. Fujisawa, H. A complete reconstruction of the neural retina of chick embryo grafted onto the chorio-allantoic membrane. Dev. Growth Differ. 13, 25–36 (1971).

    CAS  PubMed  Google Scholar 

  34. Sheffield, J. & Moscona, A. Electron microscopic analysis of aggregation of embryonic cells: the structure and differentiation of aggregates of neural retina cells. Dev. Biol. 23, 36–61 (1970).

    CAS  PubMed  Google Scholar 

  35. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    CAS  PubMed  Google Scholar 

  36. Kaech, S.M., Whitfield, C.W. & Kim, S.K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Muller, H.A. Genetic control of epithelial cell polarity: lessons from Drosophila. Dev. Dyn. 218, 52–67 (2000).

    CAS  PubMed  Google Scholar 

  38. Streisinger, G., Singer, F., Walker, C., Knauber, D. & Dower, N. Segregation analyses and gene-centromere distances in zebrafish. Genetics 112, 311–319 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338–343 (1998).

    CAS  PubMed  Google Scholar 

  40. Knapik, E.W. et al. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451–460 (1996).

    CAS  PubMed  Google Scholar 

  41. Tang, T.L., Freeman Jr, R.M., O'Reilly, A.M., Neel, B.G. & Sokol, S.Y. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 80, 473–483 (1995).

    CAS  PubMed  Google Scholar 

  42. Malicki, J. Development of the retina. Methods Cell Biol. 59, 273–299 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to T. Dryja, L. Zon, S. Heller, B. Sewell, J. Shen, Z. Pujic and H. Jo for comments on earlier versions of this manuscript. We thank Z. Pujic, G. Doerre, T. Li, D. Hong, C. Lu, L. Zon, B. Barut, D. Ransom, N. Trede and D. Sgroi for technical assistance. This work was supported by awards from the Knights Templar Eye Foundation (to X.W.), the March of Dimes Birth Defects Foundation (to J.M.), the Research to Prevent Blindness Foundation (to J.M.) and the National Eye Institute (to J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarema Malicki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Malicki, J. nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat Genet 31, 150–157 (2002). https://doi.org/10.1038/ng883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing