Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence

Abstract

Here we describe a previously unknown form of inherited immunodeficiency revealed by an N-ethyl-N-nitrosourea–induced mutation called elektra. Mice homozygous for this mutation showed enhanced susceptibility to bacterial and viral infection and diminished numbers of T cells and inflammatory monocytes that failed to proliferate after infection and died via the intrinsic apoptotic pathway in response to diverse proliferative stimuli. They also had a greater proportion of T cells poised to replicate DNA, and their T cells expressed a subset of activation markers, suggestive of a semi-activated state. We positionally ascribe the elektra phenotype to a mutation in the gene encoding Schlafen-2 (Slfn2). Our findings identify a physiological role for Slfn2 in the defense against pathogens through the regulation of quiescence in T cells and monocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice homozygous for the elektra mutation are highly susceptible to infection with MCMV, LCMV and L. monocytogenes.
Figure 2: Defect in peripheral T cells in elektra homozygotes.
Figure 3: Apoptosis of elektra-homozygous T cells in response to activation signals.
Figure 4: Apoptosis of elektra-homozygous T cells in response to homeostatic expansion signals.
Figure 5: T cells homozygous for the elektra mutation die via the intrinsic apoptotic pathway.
Figure 6: T cells homozygous for the elektra mutation exist in a semiactivated state.
Figure 7: Apoptosis of elektra-homozygous monocytes in response to activation signals.
Figure 8: 'Rescue' of the elektra phenotype by BAC transgenesis.

Similar content being viewed by others

References

  1. Yusuf, I. & Fruman, D.A. Regulation of quiescence in lymphocytes. Trends Immunol. 24, 380–386 (2003).

    Article  CAS  Google Scholar 

  2. Chechlinska, M. et al. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal. BMC Genomics 10, 261 (2009).

    Article  Google Scholar 

  3. Coller, H.A., Sang, L. & Roberts, J.M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    Article  Google Scholar 

  4. Glynne, R., Ghandour, G., Rayner, J., Mack, D.H. & Goodnow, C.C. B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunol. Rev. 176, 216–246 (2000).

    Article  CAS  Google Scholar 

  5. Teague, T.K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl. Acad. Sci. USA 96, 12691–12696 (1999).

    Article  CAS  Google Scholar 

  6. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  Google Scholar 

  7. Kuo, C.T., Veselits, M.L. & Leiden, J.M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    Article  CAS  Google Scholar 

  8. Tzachanis, D. et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat. Immunol. 2, 1174–1182 (2001).

    Article  CAS  Google Scholar 

  9. Crozat, K. et al. Analysis of the MCMV resistome by ENU mutagenesis. Mamm. Genome 17, 398–406 (2006).

    Article  CAS  Google Scholar 

  10. Webb, J.R., Lee, S.H. & Vidal, S.M. Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match 3. Genes Immun. 3, 250–262 (2002).

    Article  CAS  Google Scholar 

  11. Jiang, Z. et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc. Natl. Acad. Sci. USA 103, 10961–10966 (2006).

    Article  CAS  Google Scholar 

  12. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  Google Scholar 

  13. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  14. Juntilla, M.M. & Koretzky, G.A. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol. Lett. 116, 104–110 (2008).

    Article  CAS  Google Scholar 

  15. Wada, T. & Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849 (2004).

    Article  CAS  Google Scholar 

  16. Rincon, M. & Pedraza-Alva, G. JNK and p38 MAP kinases in CD4+ and CD8+ T cells. Immunol. Rev. 192, 131–142 (2003).

    Article  CAS  Google Scholar 

  17. Boyman, O., Ramsey, C., Kim, D.M., Sprent, J. & Surh, C.D. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T cell expansion without lymphopenia. J. Immunol. 180, 7265–7275 (2008).

    Article  CAS  Google Scholar 

  18. Kieper, W.C. & Jameson, S.C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl. Acad. Sci. USA 96, 13306–13311 (1999).

    Article  CAS  Google Scholar 

  19. Goldrath, A.W., Bogatzki, L.Y. & Bevan, M.J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  Google Scholar 

  20. Cho, B.K., Rao, V.P., Ge, Q., Eisen, H.N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    Article  CAS  Google Scholar 

  21. Khaled, A.R. & Durum, S.K. Lymphocide: cytokines and the control of lymphoid homeostasis. Nat. Rev. Immunol. 2, 817–830 (2002).

    Article  CAS  Google Scholar 

  22. Hildeman, D.A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    Article  CAS  Google Scholar 

  23. Pellegrini, M., Belz, G., Bouillet, P. & Strasser, A. Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proc. Natl. Acad. Sci. USA 100, 14175–14180 (2003).

    Article  CAS  Google Scholar 

  24. Krammer, P.H., Arnold, R. & Lavrik, I.N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532–542 (2007).

    Article  CAS  Google Scholar 

  25. Boyman, O., Cho, J.H., Tan, J.T., Surh, C.D. & Sprent, J. A major histocompatibility complex class I-dependent subset of memory phenotype CD8+ cells. J. Exp. Med. 203, 1817–1825 (2006).

    Article  CAS  Google Scholar 

  26. Oehen, S. & Brduscha-Riem, K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 161, 5338–5346 (1998).

    CAS  PubMed  Google Scholar 

  27. Chao, C.C., Jensen, R. & Dailey, M.O. Mechanisms of L-selectin regulation by activated T cells. J. Immunol. 159, 1686–1694 (1997).

    CAS  Google Scholar 

  28. Serbina, N.V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901 (2003).

    Article  CAS  Google Scholar 

  29. Schwarz, D.A., Katayama, C.D. & Hedrick, S.M. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 9, 657–668 (1998).

    Article  CAS  Google Scholar 

  30. Dooms, H. et al. Quiescence-inducing and antiapoptotic activities of IL-15 enhance secondary CD4+ T cell responsiveness to antigen. J. Immunol. 161, 2141–2150 (1998).

    CAS  PubMed  Google Scholar 

  31. Buckley, A.F., Kuo, C.T. & Leiden, J.M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat. Immunol. 2, 698–704 (2001).

    Article  CAS  Google Scholar 

  32. Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).

    Article  CAS  Google Scholar 

  33. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  Google Scholar 

  34. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  Google Scholar 

  35. Geserick, P., Kaiser, F., Klemm, U., Kaufmann, S.H. & Zerrahn, J. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int. Immunol. 16, 1535–1548 (2004).

    Article  CAS  Google Scholar 

  36. Ferguson, D.A., Chiang, J.T., Richardson, J.A. & Graff, J. eXPRESSION: an in silico tool to predict patterns of gene expression. Gene Expr. Patterns 5, 619–628 (2005).

    Article  CAS  Google Scholar 

  37. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  38. White, S.R. & Lauring, B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8, 1657–1667 (2007).

    Article  CAS  Google Scholar 

  39. Brady, G., Boggan, L., Bowie, A. & O'Neill, L.A. Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1. J. Biol. Chem. 280, 30723–30734 (2005).

    Article  CAS  Google Scholar 

  40. Kaufmann, A. et al. Defense against influenza A virus infection: essential role of the chemokine system. Immunobiology 204, 603–613 (2001).

    Article  CAS  Google Scholar 

  41. Barbalat, R., Lau, L., Locksley, R.M. & Barton, G.M. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat. Immunol. 10, 1200–1207 (2009).

    Article  CAS  Google Scholar 

  42. Gubser, C. et al. Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence. J. Gen. Virol. 88, 1667–1676 (2007).

    Article  CAS  Google Scholar 

  43. Hoebe, K., Du, X., Goode, J., Mann, N. & Beutler, B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J. Endotoxin Res. 9, 250–255 (2003).

    Article  CAS  Google Scholar 

  44. Rutschmann, S. et al. PanR1, a dominant negative missense allele of the gene encoding TNF-α (Tnf), does not impair lymphoid development. J. Immunol. 176, 7525–7532 (2006).

    Article  CAS  Google Scholar 

  45. Krebs, P. et al. NK-cell-mediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses. Blood 113, 6593–6602 (2009).

    Article  CAS  Google Scholar 

  46. Reeves, J.P., Reeves, P.A. and Chin, L.T. in Current Protocols in Immunology (eds. Coligan, J.E. et al.) 1.10.5–1.10.6 (John Wiley & Sons, Hoboken, New Jersey, 2009).

Download references

Acknowledgements

We thank O. Milstein, J.F. Purton and K. Brandl for discussions; M.B.A. Oldstone (The Scripps Research Institute) for the Armstrong strain of LCMV; and C.D. Surh (The Scripps Research Institute) for monoclonal anti-IL-7 (M25). Supported by the European Molecular Biology Organization (M.B. and P.K.), the Swiss National Science Foundation (P.K.) and the US National Institutes of Health (PO1 AI070167-01).

Author information

Authors and Affiliations

Authors

Contributions

M.B. and B.B. designed the research with critical suggestions from P.K., K.C. and A.N.T.; M.B., P.K., K.C., X.L., B.A.C., O.M.S., D.P. and B.R.L. did experiments; X.L. and X.D. generated the BAC-transgenic mice; M.B., Y.X. and K.K. did all genome mapping; T.S., O.T. and S.A. generated Slfn3−/− and Slfn1−/− mice; and M.B., E.M.Y.M. and B.B. wrote the manuscript.

Corresponding author

Correspondence to Bruce Beutler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 3841 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M., Krebs, P., Crozat, K. et al. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nat Immunol 11, 335–343 (2010). https://doi.org/10.1038/ni.1847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing