Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs

Abstract

Multiple sclerosis is an inflammatory, demyelinating, central nervous system disease mediated by myelin-specific T cells. Environmental triggers that cause the breakdown of myelin-specific T cell tolerance are unknown. Here we found that CD8+ myelin basic protein (MBP)-specific T cell tolerance was broken and autoimmunity was induced by infection with a virus that did not express MBP cross-reactive epitopes and did not depend on bystander activation. Instead, the virus activated T cells expressing dual T cell antigen receptors (TCRs) that were able to recognize both MBP and viral antigens. Our results demonstrate the importance of dual TCR–expressing T cells in autoimmunity and suggest a mechanism by which a ubiquitous viral infection could trigger autoimmunity in a subset of infected people, as suggested by the etiology of multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection with wild-type vaccinia virus induces autoimmune disease in 8.8 mice.
Figure 2: Wild-type vaccinia virus does not stimulate 8.8 T cells via bystander activation.
Figure 3: The 8.8 TCR is not cross-reactive to wild-type vaccinia virus epitopes.
Figure 4: Activation of Rag2+/+ 8.8 T cells by wild-type vaccinia virus requires expression of endogenous TCR chains.
Figure 5: Infection of 8.8 mice with wild-type vaccinia virus 'preferentially' expands CD8+ Vβ6+Vβ8+ T cell populations that respond to vaccinia virus epitopes.
Figure 6: Vac-MBP activates Rag2−/− 8.8 T cells to induce autoimmunity but wild-type vaccinia virus does not.

Similar content being viewed by others

References

  1. Goverman, J., Perchellet, A. & Huseby, E.S. The role of CD8+ T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm. Allergy 4, 239–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Friese, M.A. & Fugger, L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128, 1747–1763 (2005).

    Article  PubMed  Google Scholar 

  3. Crawford, M.P. et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103, 4222–4231 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Coles, A.J. et al. Alemtuzumab vs. interferon β-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  PubMed  Google Scholar 

  5. De Jager, P.L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cook, S.D. & Dowling, P.C. Multiple sclerosis and viruses: an overview. Neurology 30, 80–91 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Kurtzke, J.F. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6, 382–427 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cermelli, C. & Jacobson, S. Viruses and multiple sclerosis. Viral Immunol. 13, 255–267 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gilden, D.H. Infectious causes of multiple sclerosis. Lancet Neurol. 4, 195–202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vanderlugt, C.L. & Miller, S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Perchellet, A., Stromnes, I., Pang, J.M. & Goverman, J. CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'. Nat. Immunol. 5, 606–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lafaille, J.J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78, 399–408 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Friese, M.A. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14, 1227–1235 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Borgulya, P., Kishi, H., Uematsu, Y. & von Boehmer, H. Exclusion and inclusion of α and β T cell receptor alleles. Cell 69, 529–537 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Balomenos, D. et al. Incomplete T cell receptor Vβ allelic exclusion and dual Vβ-expressing cells. J. Immunol. 155, 3308–3312 (1995).

    CAS  PubMed  Google Scholar 

  17. Hurst, S.D., Sitterding, S.M., Ji, S. & Barrett, T.A. Functional differentiation of T cells in the intestine of T cell receptor transgenic mice. Proc. Natl. Acad. Sci. USA 94, 3920–3925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heath, W.R. & Miller, J.F. Expression of two α chains on the surface of T cells in T cell receptor transgenic mice. J. Exp. Med. 178, 1807–1811 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Munz, C., Lunemann, J.D., Getts, M.T. & Miller, S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salvetti, M., Giovannoni, G. & Aloisi, F. Epstein-Barr virus and multiple sclerosis. Curr. Opin. Neurol. 22, 201–206 (2009).

    Article  PubMed  Google Scholar 

  21. Pohl, D. Epstein-Barr virus and multiple sclerosis. J. Neurol. Sci. 286, 62–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ascherio, A. & Munger, K.L. Epstein-Barr virus infection and multiple sclerosis: a review. J. Neuroimmune Pharmacol. published online, doi:10.1007/s11481-010-9201-3 (6 April 2010).

  23. De Jager, P.L. et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70, 1113–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Thacker, E.L., Mirzaei, F. & Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59, 499–503 (2006).

    Article  PubMed  Google Scholar 

  25. Nielsen, T.R. et al. Multiple sclerosis after infectious mononucleosis. Arch. Neurol. 64, 72–75 (2007).

    Article  PubMed  Google Scholar 

  26. Hosking, M.P. & Lane, T.E. The biology of persistent infection: inflammation and demyelination following murine coronavirus infection of the central nervous system. Curr Immunol Rev 5, 267–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Olson, J.K., Croxford, J.L., Calenoff, M.A., Dal Canto, M.C. & Miller, S.D. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Croxford, J.L., Ercolini, A.M., Degutes, M. & Miller, S.D. Structural requirements for initiation of cross-reactivity and CNS autoimmunity with a PLP139–151 mimic peptide derived from murine hepatitis virus. Eur. J. Immunol. 36, 2671–2680 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsunoda, I., Kuang, L.Q., Kobayashi-Warren, M. & Fujinami, R.S. Central nervous system pathology caused by autoreactive CD8+ T-cell clones following virus infection. J. Virol. 79, 14640–14646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mokhtarian, F., Zhang, Z., Shi, Y., Gonzales, E. & Sobel, R.A. Molecular mimicry between a viral peptide and a myelin oligodendrocyte glycoprotein peptide induces autoimmune demyelinating disease in mice. J. Neuroimmunol. 95, 43–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Cabbage, S.E. et al. Regulatory T cells maintain long-term tolerance to myelin basic protein by inducing a novel, dynamic state of T cell tolerance. J. Immunol. 178, 887–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Teague, R.M. et al. Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the T cell receptor. Immunity 28, 662–674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alam, S.M. & Gascoigne, N.R. Posttranslational regulation of TCR Vα allelic exclusion during T cell differentiation. J. Immunol. 160, 3883–3890 (1998).

    CAS  PubMed  Google Scholar 

  35. Elliott, J.I. & Altmann, D.M. Dual T cell receptor α chain T cells in autoimmunity. J. Exp. Med. 182, 953–959 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Heath, W.R. et al. Expression of two T cell receptor α chains on the surface of normal murine T cells. Eur. J. Immunol. 25, 1617–1623 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Padovan, E. et al. Expression of two T cell receptor α chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Padovan, E. et al. Normal T lymphocytes can express two different T cell receptor β chains: implications for the mechanism of allelic exclusion. J. Exp. Med. 181, 1587–1591 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Davodeau, F. et al. Dual T cell receptor β chain expression on human T lymphocytes. J. Exp. Med. 181, 1391–1398 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. He, X. et al. Dual receptor T cells extend the immune repertoire for foreign antigens. Nat. Immunol. 3, 127–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Padovan, E., Casorati, G., Dellabona, P., Giachino, C. & Lanzavecchia, A. Dual receptor T-cells. Implications for alloreactivity and autoimmunity. Ann. NY Acad. Sci. 756, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Morris, G.P. & Allen, P.M. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. J. Immunol. 182, 6639–6643 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Elliott, E.A. et al. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J. Clin. Invest. 98, 1602–1612 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corthay, A., Nandakumar, K.S. & Holmdahl, R. Evaluation of the percentage of peripheral T cells with two different T cell receptor α-chains and of their potential role in autoimmunity. J. Autoimmun. 16, 423–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Brabb, T. et al. Triggers of autoimmune disease in a murine T-cell receptor transgenic model for multiple sclerosis. J. Immunol. 159, 497–507 (1997).

    CAS  PubMed  Google Scholar 

  46. Olivares-Villagomez, D., Wang, Y. & Lafaille, J.J. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 188, 1883–1894 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serafini, B. et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Willis, S.N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A. & Goverman, J.M. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harrington, C.J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity 8, 571–580 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Mausolf for animal husbandry and technical assistance and S. Lee and E. Pierson for critical comments on the manuscript. Supported by the National Institutes of Health (AI07272737 to J.M.G.).

Author information

Authors and Affiliations

Authors

Contributions

Q.J. did most of the experiments and analyzed the data; A.P. did the initial disease-induction experiments and critiqued the manuscript; Q.J. and J.M.G. designed the study and wrote the manuscript; and J.M.G. secured the funding.

Corresponding author

Correspondence to Joan M Goverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Table 1 (PDF 3398 kb)

Supplementary Video 1

EAE in 8.8 mice after wild-type vaccinia infection. Female 8.8 mice were intraperitoneally infected with 5×106 pfu of wild-type vaccinia virus. This video was taken one month after vaccinia infection. (MOV 2886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Q., Perchellet, A. & Goverman, J. Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol 11, 628–634 (2010). https://doi.org/10.1038/ni.1888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.1888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing