Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses

Abstract

Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell–expressed CXCR6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liver NK cells develop specific memory of haptens.
Figure 2: Liver NK cells develop specific memory of viral antigens.
Figure 3: Mouse liver NK cells recognize and discriminate between HIV-1 and influenza A.
Figure 4: NK cell–expressed CXCR6 is required for NK cell–mediated adaptive immunity to haptens.
Figure 5: NK cell–expressed CXCR6 is required for NK cell–mediated adaptive immunity to viruses.
Figure 6: CXCR6 regulates hepatic NK cell homeostasis.
Figure 7: Hepatic memory NK cells mediate hapten-specific killing in vitro.

Similar content being viewed by others

References

  1. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl, S45–S55 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Crowle, A.J. Delayed hypersensitivity in mice; its detection by skin tests and its passive transfer. Science 130, 159–160 (1959).

    Article  CAS  PubMed  Google Scholar 

  3. Orme, I.M. & Cooper, A.M. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol. Today 20, 307–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Dhabhar, F.S., Satoskar, A.R., Bluethmann, H., David, J.R. & McEwen, B.S. Stress-induced enhancement of skin immune function: A role for γ interferon. Proc. Natl. Acad. Sci. USA 97, 2846–2851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. II. Specific in vitro stimulation with a hapten, 2,4-dinitrobenzene sulfonic acid (DNB-SO3Na). J. Immunol. 112, 849–851 (1974).

    CAS  PubMed  Google Scholar 

  6. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Jonsson, A.H. & Yokoyama, W.M. Natural killer cell tolerance licensing and other mechanisms. Adv. Immunol. 101, 27–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scalzo, A.A., Manzur, M., Forbes, C.A., Brown, M.G. & Shellam, G.R. NK gene complex haplotype variability and host resistance alleles to murine cytomegalovirus in wild mouse populations. Immunol. Cell Biol. 83, 144–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Martin, M.P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Alter, G. et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J. Exp. Med. 204, 3027–3036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Boehncke, W.H. et al. Leukocyte extravasation as a target for anti-inflammatory therapy—Which molecule to choose? Exp. Dermatol. 14, 70–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. DiSanto, J.P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paust, S., Senman, B. & von Andrian, U.H. Adaptive immune responses mediated by natural killer cells. Immunol. Rev. 235, 286–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matangkasombut, P. et al. Lack of iNKT cells in patients with combined immune deficiency due to hypomorphic RAG mutations. Blood 111, 271–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Day, C.E. et al. A novel method for isolation of human lung T cells from lung resection tissue reveals increased expression of GAPDH and CXCR6. J. Immunol. Methods 342, 91–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matloubian, M., David, A., Engel, S., Ryan, J.E. & Cyster, J.G. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat. Immunol. 1, 298–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. van der Voort, R. et al. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells. J. Leukoc. Biol. 87, 1029–1039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato, T. et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J. Immunol. 174, 277–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Park, B.K., Tingle, M.D., Grabowski, P.S., Coleman, J.W. & Kitteringham, N.R. Drug-protein conjugates–XI. Disposition and immunogenicity of dinitrofluorobenzene, a model compound for the investigation of drugs as haptens. Biochem. Pharmacol. 36, 591–599 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Di Santo, J.P., Colucci, F. & Guy-Grand, D. Natural killer and T cells of innate and adaptive immunity: lymphoid compartments with different requirements for common gamma chain-dependent cytokines. Immunol. Rev. 165, 29–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Jamieson, A.M., Isnard, P., Dorfman, J.R., Coles, M.C. & Raulet, D.H. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172, 864–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Quan, F.S., Huang, C., Compans, R.W. & Kang, S.M. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol. 81, 3514–3524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang, S.M., Song, J.M., Quan, F.S. & Compans, R.W. Influenza vaccines based on virus-like particles. Virus Res. 143, 140–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hangartner, L., Zinkernagel, R.M. & Hengartner, H. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 6, 231–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Draghi, M. et al. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J. Immunol. 178, 2688–2698 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, B.Z. et al. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J. Virol. 81, 10869–10878 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shultz, L.D. et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J. Immunol. 164, 2496–2507 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Wilbanks, A. et al. Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of CC, CXC, and CX3C chemokines. J. Immunol. 166, 5145–5154 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Szczepanik, M. et al. B-1 B cells mediate required early T cell recruitment to elicit protein-induced delayed-type hypersensitivity. J. Immunol. 171, 6225–6235 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Aktas, E., Kucuksezer, U.C., Bilgic, S., Erten, G. & Deniz, G. Relationship between CD107a expression and cytotoxic activity. Cell. Immunol. 254, 149–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Raulet, D.H. A sense of something missing. Nature 358, 21–22 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Carbone, T. et al. CD56highCD16CD62L NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol. 184, 1102–1110 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Scholz, F. et al. Constitutive expression and regulated release of the transmembrane chemokine CXCL16 in human and murine skin. J. Invest. Dermatol. 127, 1444–1455 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Martin, M.P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Limou, S. et al. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J. Infect. Dis. 202, 908–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berahovich, R.D., Lai, N.L., Wei, Z., Lanier, L.L. & Schall, T.J. Evidence for NK cell subsets based on chemokine receptor expression. J. Immunol. 177, 7833–7840 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Cheng and J.D. Sullivan for technical support and A. Wagers (Harvard Medical School) for Act(EGFP) mice. Supported by the US National Institutes of Health (AI069259, AI072252, AI078897, HL56949 and AR42689), the Ragon Institute (U.H.v.A.), the Cancer Research Institute (S.P.) and the Ragon Institute of MIT, Harvard and MGH (S.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.P. and U.H.v.A. designed the study; S.P., H.S.G., B.Z.W. and M.F. did experiments; S.P., A.T. and B.S. collected and analyzed data; E.A.M., H.S.G., B.Z.W. and R.H.C. provided reagents; E.A.M., M.S. and P.W.A. provided technical support and conceptual advice; and S.P. and U.H.v.A. wrote the manuscript.

Corresponding author

Correspondence to Ulrich H von Andrian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paust, S., Gill, H., Wang, BZ. et al. Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nat Immunol 11, 1127–1135 (2010). https://doi.org/10.1038/ni.1953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.1953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing