Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crosstalk in NF-κB signaling pathways

Abstract

NF-κB transcription factors are critical regulators of immunity, stress responses, apoptosis and differentiation. A variety of stimuli coalesce on NF-κB activation, which can in turn mediate varied transcriptional programs. Consequently, NF-κB-dependent transcription is not only tightly controlled by positive and negative regulatory mechanisms but also closely coordinated with other signaling pathways. This intricate crosstalk is crucial to shaping the diverse biological functions of NF-κB into cell type– and context-specific responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Canonical and noncanonical pathways of NF-κB activation.
Figure 2: TRAF- and RIP1-dependent signaling pathways.
Figure 3: NF-κB-independent functions of IKK complex subunits.
Figure 4: Crosstalk mechanisms involving NF-κB subunits.

Similar content being viewed by others

References

  1. Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853–6866 (1999).

    CAS  PubMed  Google Scholar 

  2. Hayden, M.S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    CAS  PubMed  Google Scholar 

  3. Hayden, M.S. & Ghosh, S. NF-κB in immunobiology. Cell Res. 21, 223–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pasparakis, M., Luedde, T. & Schmidt-Supprian, M. Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13, 861–872 (2006).

    CAS  PubMed  Google Scholar 

  5. Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T. & Grumont, R. Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18, 6888–6895 (1999).

    CAS  PubMed  Google Scholar 

  6. Courtois, G. & Gilmore, T.D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25, 6831–6843 (2006).

    CAS  PubMed  Google Scholar 

  7. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    CAS  PubMed  Google Scholar 

  8. Baker, R.G., Hayden, M.S. & Ghosh, S. NF-κB, inflammation and metabolic disease. Cell Metab. 13, 11–22 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, A., Takada, Y., Boriek, A.M. & Aggarwal, B.B. Nuclear factor-κB: its role in health and disease. J. Mol. Med. 82, 434–448 (2004).

    CAS  PubMed  Google Scholar 

  10. Bradley, J.R. & Pober, J.S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20, 6482–6491 (2001).

    CAS  PubMed  Google Scholar 

  11. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tada, K. et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J. Biol. Chem. 276, 36530–36534 (2001).

    CAS  PubMed  Google Scholar 

  13. Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243–26250 (2004).

    CAS  PubMed  Google Scholar 

  14. Zarnegar, B.J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol. 9, 1364–1370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Keshet, Y. & Seger, R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 661, 3–38 (2010).

    CAS  PubMed  Google Scholar 

  17. Wajant, H., Henkler, F. & Scheurich, P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal. 13, 389–400 (2001).

    CAS  PubMed  Google Scholar 

  18. Chung, J.Y., Park, Y.C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  19. Lee, S.Y. & Choi, Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-κB activation. J. Exp. Med. 185, 1275–1285 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, H.Y., Rothe, M. & Goeddel, D.V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl. Acad. Sci. USA 93, 6721–6725 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heyninck, K. & Beyaert, R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6. FEBS Lett. 442, 147–150 (1999).

    CAS  PubMed  Google Scholar 

  22. Rothe, M. et al. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA 93, 8241–8246 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nomura, F., Kawai, T., Nakanishi, K. & Akira, S. NF-κB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes Cells 5, 191–202 (2000).

    CAS  PubMed  Google Scholar 

  24. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    PubMed  Google Scholar 

  25. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    CAS  PubMed  Google Scholar 

  26. Saha, S.K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    CAS  PubMed  Google Scholar 

  28. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. West, A.P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kopp, E. et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059–2071 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogel, R.O. et al. Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev. 21, 615–624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wong, B.R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).

    CAS  PubMed  Google Scholar 

  33. Lomaga, M.A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bryce, P.J., Oyoshi, M.K., Kawamoto, S., Oettgen, H.C. & Tsitsikov, E.N. TRAF1 regulates Th2 differentiation, allergic inflammation and nuclear localization of the Th2 transcription factor, NIP45. Int. Immunol. 18, 101–111 (2006).

    CAS  PubMed  Google Scholar 

  35. Lieberson, R. et al. Tumor necrosis factor receptor-associated factor (TRAF)2 represses the T helper cell type 2 response through interaction with NFAT-interacting protein (NIP45). J. Exp. Med. 194, 89–98 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamothe, B. et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of IκB kinase activation. J. Biol. Chem. 282, 4102–4112 (2007).

    CAS  PubMed  Google Scholar 

  37. Liang, J. et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J. Exp. Med. 207, 2959–2973 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas, G.S., Zhang, L., Blackwell, K. & Habelhah, H. Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res. 69, 3665–3672 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, L., Blackwell, K., Altaeva, A., Shi, Z. & Habelhah, H. TRAF2 phosphorylation promotes NF-κB-dependent gene expression and inhibits oxidative stress-induced cell death. Mol. Biol. Cell 22, 128–140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, S., Wang, L. & Dorf, M.E. PKC phosphorylation of TRAF2 mediates IKKα/β recruitment and K63-linked polyubiquitination. Mol. Cell 33, 30–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151–159 (2005).

    CAS  PubMed  Google Scholar 

  42. Liu, Z.G. Molecular mechanism of TNF signaling and beyond. Cell Res. 15, 24–27 (2005).

    CAS  PubMed  Google Scholar 

  43. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  44. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  45. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  46. Jones, S.J. et al. TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1. J. Immunol. 162, 1042–1048 (1999).

    CAS  PubMed  Google Scholar 

  47. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    CAS  PubMed  Google Scholar 

  48. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho, Y.S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vandenabeele, P., Declercq, W., Van Herreweghe, F. & Vanden Berghe, T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4 (2010).

    PubMed  Google Scholar 

  51. Vandenabeele, P., Declercq, W. & Vanden Berghe, T. Necrotic cell death and 'necrostatins': now we can control cellular explosion. Trends Biochem. Sci. 33, 352–355 (2008).

    CAS  PubMed  Google Scholar 

  52. Benedict, C.A., Norris, P.S. & Ware, C.F. To kill or be killed: viral evasion of apoptosis. Nat. Immunol. 3, 1013–1018 (2002).

    CAS  PubMed  Google Scholar 

  53. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z.G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    CAS  PubMed  Google Scholar 

  56. Knox, P.G., Davies, C.C., Ioannou, M. & Eliopoulos, A.G. The death domain kinase RIP1 links the immunoregulatory CD40 receptor to apoptotic signaling in carcinomas. J. Cell Biol. 192, 391–399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moquin, D. & Chan, F.K. The molecular regulation of programmed necrotic cell injury. Trends Biochem. Sci. 35, 434–441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. O'Donnell, M.A., Legarda-Addison, D., Skountzos, P., Yeh, W.C. & Ting, A.T. Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr. Biol. 17, 418–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramnarain, D.B. et al. RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ. 15, 344–353 (2008).

    CAS  PubMed  Google Scholar 

  60. Habib, A.A. et al. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-κB (NF-κB)-inducing kinase to activate NF-κB. Identification of a novel receptor-tyrosine kinase signalosome. J. Biol. Chem. 276, 8865–8874 (2001).

    CAS  PubMed  Google Scholar 

  61. Park, S. et al. RIP1 activates PI3K-Akt via a dual mechanism involving NF-κB-mediated inhibition of the mTOR-S6K–IRS1 negative feedback loop and down-regulation of PTEN. Cancer Res. 69, 4107–4111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    CAS  PubMed  Google Scholar 

  64. Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    CAS  PubMed  Google Scholar 

  65. Ozes, O.N. et al. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401, 82–85 (1999).

    CAS  PubMed  Google Scholar 

  66. Agarwal, A. et al. The AKT/IκB kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-κB and β-catenin. Oncogene 24, 1021–1031 (2005).

    CAS  PubMed  Google Scholar 

  67. Dan, H.C. et al. Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes Dev. 22, 1490–1500 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ghosh, S. et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell 10, 215–226 (2006).

    CAS  PubMed  Google Scholar 

  69. May, M.J. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554 (2000).

    CAS  PubMed  Google Scholar 

  70. Schomer-Miller, B., Higashimoto, T., Lee, Y.K. & Zandi, E. Regulation of IκB kinase (IKK) complex by IKKγ-dependent phosphorylation of the T-loop and C terminus of IKKβ. J. Biol. Chem. 281, 15268–15276 (2006).

    CAS  PubMed  Google Scholar 

  71. Comer, F.I. & Hart, G.W. O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275, 29179–29182 (2000).

    CAS  PubMed  Google Scholar 

  72. Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. Loss of p53 enhances catalytic activity of IKKβ through O-linked β-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. USA 106, 3431–3436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Frelin, C. et al. Inhibition of the NF-κB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-κB essential modulator NEMO. Cell Death Differ. 15, 152–160 (2008).

    CAS  PubMed  Google Scholar 

  74. Tang, G., Yang, J., Minemoto, Y. & Lin, A. Blocking caspase-3-mediated proteolysis of IKKβ suppresses TNF-α-induced apoptosis. Mol. Cell 8, 1005–1016 (2001).

    CAS  PubMed  Google Scholar 

  75. Levkau, B., Scatena, M., Giachelli, C.M., Ross, R. & Raines, E.W. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop. Nat. Cell Biol. 1, 227–233 (1999).

    CAS  PubMed  Google Scholar 

  76. Reuther, J.Y. & Baldwin, A.S. Jr. Apoptosis promotes a caspase-induced amino-terminal truncation of IκBα that functions as a stable inhibitor of NF-κB. J. Biol. Chem. 274, 20664–20670 (1999).

    CAS  PubMed  Google Scholar 

  77. Vilimas, T. et al. Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia. Nat. Med. 13, 70–77 (2007).

    CAS  PubMed  Google Scholar 

  78. Song, L.L. et al. Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells. Oncogene 27, 5833–5844 (2008).

    CAS  PubMed  Google Scholar 

  79. Osipo, C., Golde, T.E., Osborne, B.A. & Miele, L.A. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest. 88, 11–17 (2008).

    CAS  PubMed  Google Scholar 

  80. Hinz, M. & Scheidereit, C. Striking back at the activator: how IκB kinase terminates antigen receptor responses. Sci. STKE 2007, pe19 (2007).

    PubMed  Google Scholar 

  81. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    CAS  PubMed  Google Scholar 

  82. Chariot, A. The NF-κB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol. 19, 404–413 (2009).

    CAS  PubMed  Google Scholar 

  83. Hu, M.C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    CAS  PubMed  Google Scholar 

  84. Chapuis, N. et al. IκB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 116, 4240–4250 (2010).

    CAS  PubMed  Google Scholar 

  85. Lee, D.F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    CAS  PubMed  Google Scholar 

  86. Suzuki, K. & Verma, I.M. Phosphorylation of SNAP-23 by IκB kinase 2 regulates mast cell degranulation. Cell 134, 485–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo, Z., Turner, C. & Castle, D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94, 537–548 (1998).

    CAS  PubMed  Google Scholar 

  88. Hepp, R. et al. Phosphorylation of SNAP-23 regulates exocytosis from mast cells. J. Biol. Chem. 280, 6610–6620 (2005).

    CAS  PubMed  Google Scholar 

  89. Polgar, J., Lane, W.S., Chung, S.H., Houng, A.K. & Reed, G.L. Phosphorylation of SNAP-23 in activated human platelets. J. Biol. Chem. 278, 44369–44376 (2003).

    CAS  PubMed  Google Scholar 

  90. Waterfield, M.R., Zhang, M., Norman, L.P. & Sun, S.C. NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol. Cell 11, 685–694 (2003).

    CAS  PubMed  Google Scholar 

  91. Beinke, S. et al. NF-κB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol. Cell Biol. 23, 4739–4752 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Beinke, S., Robinson, M.J., Hugunin, M. & Ley, S.C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658–9667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S.C. IκB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell Biol. 24, 6040–6048 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    CAS  PubMed  Google Scholar 

  95. Ferrier, R. et al. Physical interaction of the bHLH LYL1 protein and NF-κB1 p105. Oncogene 18, 995–1005 (1999).

    CAS  PubMed  Google Scholar 

  96. Li, Z., Zhang, J., Chen, D. & Shu, H.B. Casper/c-FLIP is physically and functionally associated with NF-κB1 p105. Biochem. Biophys. Res. Commun. 309, 980–985 (2003).

    CAS  PubMed  Google Scholar 

  97. Lang, V. et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell Biol. 24, 5235–5248 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Verstrepen, L., Carpentier, I., Verhelst, K. & Beyaert, R. ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochem. Pharmacol. 78, 105–114 (2009).

    CAS  PubMed  Google Scholar 

  99. Papoutsopoulou, S. et al. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nat. Immunol. 7, 606–615 (2006).

    CAS  PubMed  Google Scholar 

  100. Oshima, S. et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 457, 906–909 (2009).

    CAS  PubMed  Google Scholar 

  101. Lee, S. et al. IκB kinase β phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc. Natl. Acad. Sci. USA 101, 17416–17421 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 27, 93–104 (2011).

    Google Scholar 

  103. Kawagoe, T. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat. Immunol. 10, 965–972 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boehm, J.S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007).

    CAS  PubMed  Google Scholar 

  106. Shen, R.R. & Hahn, W.C. Emerging roles for the non-canonical IKKs in cancer. Oncogene 30, 631–641 (2011).

    CAS  PubMed  Google Scholar 

  107. Tilg, H. & Moschen, A.R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 14, 222–231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115–48121 (2002).

    CAS  PubMed  Google Scholar 

  109. He, J. et al. Interleukin-1α inhibits insulin signaling with phosphorylating insulin receptor substrate-1 on serine residues in 3T3–L1 adipocytes. Mol. Endocrinol. 20, 114–124 (2006).

    CAS  PubMed  Google Scholar 

  110. Nakamori, Y. et al. Myosin motor Myo1c and its receptor NEMO/IKK-gamma promote TNF-α-induced serine307 phosphorylation of IRS-1. J. Cell Biol. 173, 665–671 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yaspelkis, B.B. III, Kvasha, I.A. & Figueroa, T.Y. High-fat feeding increases insulin receptor and IRS-1 coimmunoprecipitation with SOCS-3, IKKα/β phosphorylation and decreases PI-3 kinase activity in muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1709–R1715 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rao, T.P. & Kuhl, M. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806 (2010).

    CAS  PubMed  Google Scholar 

  113. Albanese, C. et al. IKKα regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol. Biol. Cell 14, 585–599 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Carayol, N. & Wang, C.Y. IKKα stabilizes cytosolic β-catenin by inhibiting both canonical and non-canonical degradation pathways. Cell Signal. 18, 1941–1946 (2006).

    CAS  PubMed  Google Scholar 

  115. Lamberti, C. et al. Regulation of β-catenin function by the IκB kinases. J. Biol. Chem. 276, 42276–42286 (2001).

    CAS  PubMed  Google Scholar 

  116. Park, K.J., Krishnan, V., O'Malley, B.W., Yamamoto, Y. & Gaynor, R.B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71–82 (2005).

    CAS  PubMed  Google Scholar 

  117. Wu, R.C. et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by IκB kinase. Mol. Cell Biol. 22, 3549–3561 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kwak, Y.T. et al. IκB kinase α regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. J. Biol. Chem. 280, 33945–33952 (2005).

    CAS  PubMed  Google Scholar 

  119. Song, L. et al. A novel role of IKKα in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. Biochim. Biophys. Acta. 1803, 323–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kwak, Y.T. et al. Cells lacking IKKα show nuclear cyclin D1 overexpression and a neoplastic phenotype: role of IKKα as a tumor suppressor. Mol. Cancer Res. 9, 341–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949–953 (2006).

    CAS  PubMed  Google Scholar 

  122. Wang, R.P. et al. Differential regulation of IKK α-mediated activation of IRF3/7 by NIK. Mol. Immunol. 45, 1926–1934 (2008).

    CAS  PubMed  Google Scholar 

  123. Balkhi, M.Y., Fitzgerald, K.A. & Pitha, P.M. IKKα negatively regulates IRF-5 function in a MyD88-TRAF6 pathway. Cell. Signal. 22, 117–127 (2010).

    CAS  PubMed  Google Scholar 

  124. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

    CAS  PubMed  Google Scholar 

  125. Yamamoto, Y., Verma, U.N., Prajapati, S., Kwak, Y.T. & Gaynor, R.B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    CAS  PubMed  Google Scholar 

  126. Anest, V., Cogswell, P.C. & Baldwin, A.S. Jr. IκB kinase α and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IκBα degradation. J. Biol. Chem. 279, 31183–31189 (2004).

    CAS  PubMed  Google Scholar 

  127. Saccani, S., Pantano, S. & Natoli, G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol. 3, 69–75 (2002).

    CAS  PubMed  Google Scholar 

  128. Li, Q. et al. IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev. 13, 1322–1328 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science 284, 313–316 (1999).

    CAS  PubMed  Google Scholar 

  130. Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320 (1999).

    CAS  PubMed  Google Scholar 

  131. Sil, A.K., Maeda, S., Sano, Y., Roop, D.R. & Karin, M. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature 428, 660–664 |(2004).

    CAS  PubMed  Google Scholar 

  132. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    CAS  PubMed  Google Scholar 

  133. Zhu, F. et al. IKKα shields 14–3-3sigma, a G(2)/M cell cycle checkpoint gene, from hypermethylation, preventing its silencing. Mol. Cell 27, 214–227 (2007).

    CAS  PubMed  Google Scholar 

  134. Liu, B. et al. IKKα is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14, 212–225 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature 410, 710–714 (2001).

    CAS  PubMed  Google Scholar 

  136. Ohazama, A. et al. A dual role for IKKα in tooth development. Dev. Cell 6, 219–227 (2004).

    CAS  PubMed  Google Scholar 

  137. Descargues, P. et al. IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc. Natl. Acad. Sci. USA 105, 2487–2492 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ravi, R. et al. p53-mediated repression of nuclear factor-κB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531–4536 (1998).

    CAS  PubMed  Google Scholar 

  139. Webster, G.A. & Perkins, N.D. Transcriptional cross talk between NF-κB and p53. Mol. Cell Biol. 19, 3485–3495 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang, W.C., Ju, T.K., Hung, M.C. & Chen, C.C. Phosphorylation of CBP by IKKα promotes cell growth by switching the binding preference of CBP from p53 to NF-κB. Mol. Cell 26, 75–87 (2007).

    PubMed  PubMed Central  Google Scholar 

  141. Luo, J.L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694 (2007).

    CAS  PubMed  Google Scholar 

  142. Bracken, C.P., Whitelaw, M.L. & Peet, D.J. Activity of hypoxia-inducible factor 2α is regulated by association with the NF-κB essential modulator. J. Biol. Chem. 280, 14240–14251 (2005).

    CAS  PubMed  Google Scholar 

  143. Cockman, M.E. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl. Acad. Sci. USA 103, 14767–14772 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bettermann, K. et al. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell 17, 481–496 (2010).

    CAS  PubMed  Google Scholar 

  145. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    CAS  PubMed  Google Scholar 

  146. Matsuzawa, A. et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321, 663–668 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600 (2007).

    CAS  PubMed  Google Scholar 

  148. Chen, L.F. & Greene, W.C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

    CAS  PubMed  Google Scholar 

  149. Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89, 413–424 (1997).

    CAS  PubMed  Google Scholar 

  150. Zhong, H., May, M.J., Jimi, E. & Ghosh, S. The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9, 625–636 (2002).

    CAS  PubMed  Google Scholar 

  151. Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. & Haegeman, G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 22, 1313–1324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Leitges, M. et al. Targeted disruption of the ζPKC gene results in the impairment of the NF-κB pathway. Mol. Cell 8, 771–780 (2001).

    CAS  PubMed  Google Scholar 

  153. Schwabe, R.F. & Brenner, D.A. Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G204–G211 (2002).

    CAS  PubMed  Google Scholar 

  154. Wang, D., Westerheide, S.D., Hanson, J.L. & Baldwin, A.S. Jr. Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592–32597 (2000).

    CAS  PubMed  Google Scholar 

  155. Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353–30356 (1999).

    CAS  PubMed  Google Scholar 

  156. Bohuslav, J., Chen, L.F., Kwon, H., Mu, Y. & Greene, W.C. p53 induces NF-κB activation by an IκB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J. Biol. Chem. 279, 26115–26125 (2004).

    CAS  PubMed  Google Scholar 

  157. Fujita, F. et al. Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling. Mol. Cell Biol. 23, 7780–7793 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Haller, D., Russo, M.P., Sartor, R.B. & Jobin, C. IKKβ and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-κB activation in both primary and intestinal epithelial cell lines. J. Biol. Chem. 277, 38168–38178 (2002).

    CAS  PubMed  Google Scholar 

  159. Rocha, S., Garrett, M.D., Campbell, K.J., Schumm, K. & Perkins, N.D. Regulation of NF-κB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. EMBO J. 24, 1157–1169 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen, L., Fischle, W., Verdin, E. & Greene, W.C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    CAS  Google Scholar 

  161. Chen, L.F., Mu, Y. & Greene, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kiernan, R. et al. Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278, 2758–2766 (2003).

    CAS  PubMed  Google Scholar 

  163. Ea, C.K. & Baltimore, D. Regulation of NF-κB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. USA 106, 18972–18977 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, Y. et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem. 283, 26771–26781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang, X.D. et al. Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J. 28, 1055–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lu, T. et al. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA 107, 46–51 (2010).

    CAS  PubMed  Google Scholar 

  167. Wietek, C., Miggin, S.M., Jefferies, C.A. & O'Neill, L.A. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-κ. J. Biol. Chem. 278, 50923–50931 (2003).

    CAS  PubMed  Google Scholar 

  168. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    CAS  PubMed  Google Scholar 

  169. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Apostolou, E. & Thanos, D. Virus Infection Induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96 (2008).

    CAS  PubMed  Google Scholar 

  171. Cheng, C.S. et al. The specificity of innate immune responses is enforced by repression of interferon response elements by NF-κB p50. Sci. Signal. 4, ra11 (2011).

    PubMed  PubMed Central  Google Scholar 

  172. Wei, L. et al. NFκB negatively regulates interferon-induced gene expression and anti-influenza activity. J. Biol. Chem. 281, 11678–11684 (2006).

    CAS  PubMed  Google Scholar 

  173. Sha, W.C., Liou, H.C., Tuomanen, E.I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    CAS  PubMed  Google Scholar 

  174. Perkins, N.D. Achieving transcriptional specificity with NF-κB. Int. J. Biochem. Cell Biol. 29, 1433–1448 (1997).

    CAS  PubMed  Google Scholar 

  175. Sanceau, J., Kaisho, T., Hirano, T. & Wietzerbin, J. Triggering of the human interleukin-6 gene by interferon-gamma and tumor necrosis factor-α in monocytic cells involves cooperation between interferon regulatory factor-1, NFκB, and Sp1 transcription factors. J. Biol. Chem. 270, 27920–27931 (1995).

    CAS  PubMed  Google Scholar 

  176. Wang, T., Lafuse, W.P. & Zwilling, B.S. NFκB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. J. Immunol. 167, 6924–6932 (2001).

    CAS  PubMed  Google Scholar 

  177. Stein, B. et al. Cross-coupling of the NF-κB p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J. 12, 3879–3891 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Krappmann, D. et al. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol. Cell Biol. 24, 6488–6500 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fujioka, S. et al. NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell. Biol. 24, 7806–7819 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Koga, K. et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity 30, 372–383 (2009).

    CAS  PubMed  Google Scholar 

  181. Stein, B. & Baldwin, A.S. Jr. Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-κB. Mol. Cell Biol. 13, 7191–7198 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Xia, C., Cheshire, J.K., Patel, H. & Woo, P. Cross-talk between transcription factors NF-κB and C/EBP in the transcriptional regulation of genes. Int. J. Biochem. Cell Biol. 29, 1525–1539 (1997).

    CAS  PubMed  Google Scholar 

  183. Papa, S., Zazzeroni, F., Pham, C.G., Bubici, C. & Franzoso, G. Linking JNK signaling to NF-κB: a key to survival. J. Cell Sci. 117, 5197–5208 (2004).

    CAS  PubMed  Google Scholar 

  184. Tergaonkar, V., Pando, M., Vafa, O., Wahl, G. & Verma, I. p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493–503 (2002).

    CAS  PubMed  Google Scholar 

  185. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Greten, F.R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (R37-AI33443) and the American Heart Association (A.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Ghosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oeckinghaus, A., Hayden, M. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat Immunol 12, 695–708 (2011). https://doi.org/10.1038/ni.2065

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2065

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing