Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3

Abstract

The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8+ T cell responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8α+ DCs. We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic CD8α+ DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other Gram-positive bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complement C3 mediates efficient L. monocytogenes (LM) infection of the spleen.
Figure 2: Complement C3 enables efficient L. monocytogenes entry into splenic CD8α+ DCs.
Figure 3: Complement C3 and platelet GPIb enable bacteria-platelet interactions that mediate L. monocytogenes shuttling to splenic CD8α+ DCs.
Figure 4: Platelets are specifically taken up by splenic CD8α+ DCs and mediate L. monocytogenes delivery to this cell population.
Figure 5: Impaired anti-L. monocytogenes CD8+ T cell population expansion after inefficient platelet-mediated bacterial targeting to CD8α+ DCs.
Figure 6: Lack of complement-mediated platelet association leads to accelerated bacterial clearance.
Figure 7: C3-mediated platelet association among various Gram-positive bacteria.

Similar content being viewed by others

References

  1. Savina, A. & Amigorena, S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007).

    Article  CAS  Google Scholar 

  2. van Lookeren Campagne, M., Wiesmann, C. & Brown, E.J. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9, 2095–2102 (2007).

    Article  CAS  Google Scholar 

  3. Ochsenbein, A.F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  Google Scholar 

  4. Mebius, R.E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  Google Scholar 

  5. Idoyaga, J., Suda, N., Suda, K., Park, C.G. & Steinman, R.M. Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 106, 1524–1529 (2009).

    Article  CAS  Google Scholar 

  6. Backer, R. et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc. Natl. Acad. Sci. USA 107, 216–221 (2010).

    Article  CAS  Google Scholar 

  7. Pamer, E.G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).

    Article  CAS  Google Scholar 

  8. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  9. Reinicke, A.T., Omilusik, K.D., Basha, G. & Jefferies, W.A. Dendritic cell cross-priming is essential for immune responses to Listeria monocytogenes. PLoS ONE 4, e7210 (2009).

    Article  Google Scholar 

  10. Zammit, D.J., Cauley, L.S., Pham, Q.M. & Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

    Article  CAS  Google Scholar 

  11. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    Article  CAS  Google Scholar 

  12. Belz, G.T., Shortman, K., Bevan, M.J. & Heath, W.R. CD8α+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 175, 196–200 (2005).

    Article  CAS  Google Scholar 

  13. Aoshi, T. et al. The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen. Eur. J. Immunol. 39, 417–425 (2009).

    Article  CAS  Google Scholar 

  14. Neuenhahn, M. et al. CD8α+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25, 619–630 (2006).

    Article  CAS  Google Scholar 

  15. Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171, 1148–1155 (2003).

    Article  CAS  Google Scholar 

  16. Skamene, E. & Chayasirisobhon, W. Enhanced resistance to Listeria monocytogenes in splenectomized mice. Immunology 33, 851–858 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neuenhahn, M., Schiemann, M. & Busch, D.H. DCs in mouse models of intracellular bacterial infection. Methods Mol. Biol. 595, 319–329 (2010).

    Article  Google Scholar 

  18. Croize, J., Arvieux, J., Berche, P. & Colomb, M.G. Activation of the human complement alternative pathway by Listeria monocytogenes: evidence for direct binding and proteolysis of the C3 component on bacteria. Infect. Immun. 61, 5134–5139 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ford, I. & Douglas, C.W. The role of platelets in infective endocarditis. Platelets 8, 285–294 (1997).

    Article  CAS  Google Scholar 

  20. Loughman, A. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 57, 804–818 (2005).

    Article  CAS  Google Scholar 

  21. Nguyen, T., Ghebrehiwet, B. & Peerschke, E.I. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect. Immun. 68, 2061–2068 (2000).

    Article  CAS  Google Scholar 

  22. Kleinschnitz, C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115, 2323–2330 (2007).

    Article  CAS  Google Scholar 

  23. Kanaji, T., Russell, S. & Ware, J. Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. Blood 100, 2102–2107 (2002).

    Article  CAS  Google Scholar 

  24. Cunnion, K.M., Benjamin, D.K. Jr., Hester, C.G. & Frank, M.M. Role of complement receptors 1 and 2 (CD35 and CD21), C3, C4, and C5 in survival by mice of Staphylococcus aureus bacteremia. J. Lab. Clin. Med. 143, 358–365 (2004).

    Article  CAS  Google Scholar 

  25. Wessels, M.R. et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc. Natl. Acad. Sci. USA 92, 11490–11494 (1995).

    Article  CAS  Google Scholar 

  26. Hyams, C., Camberlein, E., Cohen, J.M., Bax, K. & Brown, J.S. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect. Immun. 78, 704–715 (2010).

  27. Figueroa, J.E. & Densen, P. Infectious diseases associated with complement deficiencies. Clin. Microbiol. Rev. 4, 359–395 (1991).

    Article  CAS  Google Scholar 

  28. Drevets, D.A. & Campbell, P.A. Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect. Immun. 59, 2645–2652 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakayama, Y. et al. C3 promotes expansion of CD8+ and CD4+ T cells in a Listeria monocytogenes infection. J. Immunol. 183, 2921–2931 (2009).

    Article  CAS  Google Scholar 

  30. Gregory, S.H. et al. Complementary adhesion molecules promote neutrophil-Kupffer cell interaction and the elimination of bacteria taken up by the liver. J. Immunol. 168, 308–315 (2002).

    Article  CAS  Google Scholar 

  31. Helmy, K.Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    Article  CAS  Google Scholar 

  32. Fitzgerald, J.R., Foster, T.J. & Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol. 4, 445–457 (2006).

    Article  CAS  Google Scholar 

  33. Braun, L., Ghebrehiwet, B. & Cossart, P. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19, 1458–1466 (2000).

    Article  CAS  Google Scholar 

  34. Ford, I. et al. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. Br. J. Haematol. 97, 737–746 (1997).

    Article  CAS  Google Scholar 

  35. Cosgrove, L.J., d'Apice, A.J., Haddad, A., Pedersen, J. & McKenzie, I.F. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway. Immunol. Cell Biol. 65, 453–460 (1987).

    Article  CAS  Google Scholar 

  36. Vik, D.P. & Fearon, D.T. Cellular distribution of complement receptor type 4 (CR4): expression on human platelets. J. Immunol. 138, 254–258 (1987).

    CAS  PubMed  Google Scholar 

  37. Kim, D.D. et al. Deficiency of decay-accelerating factor and complement receptor 1-related gene/protein y on murine platelets leads to complement-dependent clearance by the macrophage phagocytic receptor CRIg. Blood 112, 1109–1119 (2008).

    Article  CAS  Google Scholar 

  38. Alexander, J.J., Hack, B.K., Cunningham, P.N. & Quigg, R.J. A protein with characteristics of factor H is present on rodent platelets and functions as the immune adherence receptor. J. Biol. Chem. 276, 32129–32135 (2001).

    Article  CAS  Google Scholar 

  39. Mollenkopf, H., Dietrich, G. & Kaufmann, S.H. Intracellular bacteria as targets and carriers for vaccination. Biol. Chem. 382, 521–532 (2001).

    Article  CAS  Google Scholar 

  40. Heath, W.R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  Google Scholar 

  41. Qiu, C.H. et al. Novel subset of CD8α+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182, 4127–4136 (2009).

    Article  CAS  Google Scholar 

  42. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  Google Scholar 

  43. Humbles, A.A. et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406, 998–1001 (2000).

    Article  CAS  Google Scholar 

  44. Fischer, M.B. et al. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J. Immunol. 157, 549–556 (1996).

    CAS  PubMed  Google Scholar 

  45. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  46. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  47. Bahjat, K.S. et al. Cytosolic entry controls CD8+-T-cell potency during bacterial infection. Infect. Immun. 74, 6387–6397 (2006).

    Article  CAS  Google Scholar 

  48. Staib, C., Drexler, I. & Sutter, G. Construction and isolation of recombinant MVA. Methods Mol. Biol. 269, 77–100 (2004).

    CAS  PubMed  Google Scholar 

  49. Verschoor, A., Brockman, M.A., Knipe, D.M. & Carroll, M.C. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. J. Immunol. 167, 2446–2451 (2001).

    Article  CAS  Google Scholar 

  50. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gordon, P. Lachmann and H. Wagner for input; M. Botto (Imperial College, London) for C1qa−/− mice; M. Carroll (Harvard Medical School) for C3−/− and C4b−/− mice; C. Gerard (Harvard Medical School) for C3ar−/− mice; F. Petry (Johannes Gutenberg University of Mainz, Germany) for C1qa−/− mice; M. van der Linden (University Hospital Aachen, Germany) for Streptococcus strains; S. Feihl and V. Greifenberg for bacterial typing; L. Henkel, M. Schiemann and K. Wild for flow cytometry cell sorting; K. Mink, S. Vieweg and A. Wanisch for experimental assistance; and L. Layland for support preparing the manuscript. Supported by the German Research Foundation SFB 914 (TP-B4 to A.V. and D.H.B.) and SFB 576 (TP-A8 to D.H.B.), the Swiss National Foundation (3100AO-100779/2 and 3100AO-100068/2 to H.H. and R.M.Z.), the German Center for Infection Research (DZIF; D.H.B.) and the European Commission (Marie Curie Fellowship to A.V.).

Author information

Authors and Affiliations

Authors

Contributions

A.V., M.N., A.A.N., A.P., A.S. and P.G. did experiments; B.N. and S.M. supplied reagents and assisted with data interpretation; A.V. and D.H.B. conceived the study; A.V., M.N., A.A.N. and P.G. analyzed the data; A.V., H.H., R.M.Z. and D.H.B. planned the experiments and supervised the study. A.V. and D.H.B. wrote the paper.

Corresponding authors

Correspondence to Admar Verschoor or Dirk H Busch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschoor, A., Neuenhahn, M., Navarini, A. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 12, 1194–1201 (2011). https://doi.org/10.1038/ni.2140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing