Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization

Abstract

Emerging concepts suggest that the functional phenotype of macrophages is regulated by transcription factors that define alternative activation states. We found that RBP-J, the main nuclear transducer of signaling via Notch receptors, augmented Toll-like receptor 4 (TLR4)-induced expression of key mediators of classically activated M1 macrophages and thus of innate immune responses to Listeria monocytogenes. Notch–RBP-J signaling controlled expression of the transcription factor IRF8 that induced downstream M1 macrophage–associated genes. RBP-J promoted the synthesis of IRF8 protein by selectively augmenting kinase IRAK2–dependent signaling via TLR4 to the kinase MNK1 and downstream translation-initiation control through eIF4E. Our results define a signaling network in which signaling via Notch–RBP-J and TLRs is integrated at the level of synthesis of IRF8 protein and identify a mechanism by which heterologous signaling pathways can regulate the TLR-induced inflammatory polarization of macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RBP-J controls the expression of prototypical M1 macrophage–associated genes.
Figure 2: Induction of RBP-J-dependent M1 macrophage–associated genes requires canonical Notch signaling.
Figure 3: RBP-J controls the expression and function of IRF8.
Figure 4: IRF8 mediates RBP-J-dependent activation of the expression of M1 macrophage–associated genes.
Figure 5: RBP-J promotes the synthesis of IRF8 protein.
Figure 6: RBP-J augments the TLR4-induced activation of the MAPK-MNK1-eIF4E pathway.
Figure 7: Notch–RBP-J signaling regulates the expression of IRAK2 protein.
Figure 8: The MAPK-MNK1-eIF4E axis promotes the synthesis of IRF8 and the expression of M1 macrophage–associated genes.

Similar content being viewed by others

References

  1. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Tailor, P. et al. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27, 228–239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J., Guan, X., Tamura, T., Ozato, K. & Ma, X. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J. Biol. Chem. 279, 55609–55617 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Xiong, H. et al. Complex formation of the interferon (IFN) consensus sequence-binding protein with IRF-1 is essential for murine macrophage IFN-γ-induced iNOS gene expression. J. Biol. Chem. 278, 2271–2277 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Giese, N.A. et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J. Exp. Med. 186, 1535–1546 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, H. & Morse, H.C. III. IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol. Res. 43, 109–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamura, T. & Ozato, K. ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J. Interferon Cytokine Res. 22, 145–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Smale, S.T. Selective transcription in response to an inflammatory stimulus. Cell 140, 833–844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 10, 24–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Mazumder, B., Li, X. & Barik, S. Translation control: a multifaceted regulator of inflammatory response. J. Immunol. 184, 3311–3319 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kopan, R. & Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, J.S., Kousis, P.C., Suliman, S., Visan, I. & Guidos, C.J. Functions of notch signaling in the immune system: consensus and controversies. Annu. Rev. Immunol. 28, 343–365 (2010).

    Article  PubMed  Google Scholar 

  16. Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, X. et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 29, 691–703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monsalve, E. et al. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J. Immunol. 176, 5362–5373 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, J., Cheng, P., Youn, J.I., Cotter, M.J. & Gabrilovich, D.I. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30, 845–859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foldi, J. et al. Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J. Immunol. 185, 5023–5031 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y.C. et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, B., Grimes, S.N., Li, S., Hu, X. & Ivashkiv, L.B. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J. Exp. Med. 209, 319–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Outtz, H.H., Wu, J.K., Wang, X. & Kitajewski, J. Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J. Immunol. 185, 4363–4373 (2010).

    Article  PubMed  Google Scholar 

  25. Serbina, N.V., Jia, T., Hohl, T.M. & Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swiatek, P.J., Lindsell, C.E., del Amo, F.F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Murtaugh, L.C., Stanger, B.Z., Kwan, K.M. & Melton, D.A. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl. Acad. Sci. USA 100, 14920–14925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plevy, S.E., Gemberling, J.H., Hsu, S., Dorner, A.J. & Smale, S.T. Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell Biol. 17, 4572–4588 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grumont, R. et al. c-Rel regulates interleukin 12 p70 expression in CD8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021–1032 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie, Q.W., Kashiwabara, Y. & Nathan, C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705–4708 (1994).

    CAS  PubMed  Google Scholar 

  31. Masumi, A., Tamaoki, S., Wang, I.M., Ozato, K. & Komuro, K. IRF-8/ICSBP and IRF-1 cooperatively stimulate mouse IL-12 promoter activity in macrophages. FEBS Lett. 531, 348–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, J. et al. Activation of IL-27 p28 gene transcription by interferon regulatory factor 8 in cooperation with interferon regulatory factor 1. J. Biol. Chem. 285, 21269–21281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kantakamalakul, W. et al. Regulation of IFN consensus sequence binding protein expression in murine macrophages. J. Immunol. 162, 7417–7425 (1999).

    CAS  PubMed  Google Scholar 

  35. Zhao, J. et al. IRF-8/interferon (IFN) consensus sequence-binding protein is involved in Toll-like receptor (TLR) signaling and contributes to the cross-talk between TLR and IFN-γ signaling pathways. J. Biol. Chem. 281, 10073–10080 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Xiong, H. et al. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J. Biol. Chem. 280, 23531–23539 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S. & Fukunaga, R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol. Cell. Biol. 24, 6539–6549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, Y. et al. Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J. Biol. Chem. 284, 10367–10375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joshi, S. et al. Essential role for Mnk kinases in type II interferon (IFNγ) signaling and its suppressive effects on normal hematopoiesis. J. Biol. Chem. 286, 6017–6026 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Flannery, S.M., Keating, S.E., Szymak, J. & Bowie, A.G. Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor α. J. Biol. Chem. 286, 23688–23697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Waskiewicz, A.J., Flynn, A., Proud, C.G. & Cooper, J.A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16, 1909–1920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conner, J.R., Smirnova, II & Poltorak, A. A mutation in Irak2c identifies IRAK-2 as a central component of the TLR regulatory network of wild-derived mice. J. Exp. Med. 206, 1615–1631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osipo, C., Golde, T.E., Osborne, B.A. & Miele, L.A. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest. 88, 11–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Shin, H.M. et al. Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J. 25, 129–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Shelton, C.C., Tian, Y., Frattini, M.G. & Li, Y.M. An exo-cell assay for examining real-time γ-secretase activity and inhibition. Mol. Neurodegener. 4, 22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jorissen, E. et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J. Neurosci. 30, 4833–4844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horiuchi, K. et al. Cutting edge: TNF-α-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 179, 2686–2689 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, H. et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. USA 108, 14908–14913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Honjo (Kyoto University) for Rbpjflox/flox mice; T. Gridley (Maine Medical Center Research Institute) for Notch1+/− mice; R. Kopan (Washington University) for NICD1 expression plasmids; S. Smale (University of California, Los Angeles) for Il12b promoter reporter constructs; M. Takami (Showa University) for the IRF8 expression construct; S. Akira (Osaka University) for IRAK2 retroviral constructs; J.A. Cooper (Fred Hutchinson Cancer Research Center) for MNK1 expression plasmids; E. Kieff (Harvard Medical School); J.C. Aster (Harvard Medical School) for anti-RBP-J rabbit serum; E.G. Pamer for discussions about the L. monocytogenes infection experiments; and K. Au for technical assistance. Supported by the American College of Rheumatology (X.H.) and the US National Institutes of Health (L.B.I. and X.H.).

Author information

Authors and Affiliations

Authors

Contributions

H.X., J.Z., J.F., A.Y.C. and C.S. did experiments and analyzed data; S.S. did experiments, analyzed data and prepared the manuscript. B.Z. generated NICD1M mice, provided the IRF8-expressing retroviral vector and assisted with the experiments with Irf8−/− mice; H.O. and J.K. provided Notch1+/− mice; S.W. and P.S. provided ADAM10-deficient mice; Y.L. provided GSI34; K.O. provided Irf8−/− mice; C.P.B. provided mice with loxP-flanked Adam17 alleles and advice about experiments; L.B.I. provided advice about experiments and contributed to manuscript preparation; and X.H. designed research, supervised experiments and prepared the manuscript.

Corresponding author

Correspondence to Xiaoyu Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 3622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Zhu, J., Smith, S. et al. Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13, 642–650 (2012). https://doi.org/10.1038/ni.2304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing