Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium

Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1 or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolonged survival of Ifnar1−/− mice to S. Typhimurium infection.
Figure 2: Ifnar1−/− macrophages are resistant to S. Typhimurium–induced cell death.
Figure 3: Cytokine secretion and inflammasome activation are not impaired in Ifnar1−/− macrophages.
Figure 4: Type I interferon induces necroptosis in S. Typhimurium–infected macrophages.
Figure 5: Infection of macrophages with S. Typhimurium leads to type I interferon–dependent phosphorylation of RIP1 and RIP3.
Figure 6: Engagement of IFNAR leads to necroptosis.
Figure 7: Inhibition of necroptosis in macrophages leads to less macrophage death and enhanced bacterial control.

Similar content being viewed by others

References

  1. Jones, B.D. & Falkow, S. Salmonellosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol. 14, 533–561 (1996).

    Article  CAS  Google Scholar 

  2. Vidal, S. et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182, 655–666 (1995).

    Article  CAS  Google Scholar 

  3. Sad, S. et al. Pathogen proliferation governs the magnitude but compromises the function of CD8 T cells. J. Immunol. 180, 5853–5861 (2008).

    Article  CAS  Google Scholar 

  4. Luu, R.A. et al. Delayed expansion and contraction of CD8+ T cell response during infection with virulent Salmonella typhimurium. J. Immunol. 177, 1516–1525 (2006).

    Article  CAS  Google Scholar 

  5. Albaghdadi, H., Robinson, N., Finlay, B., Krishnan, L. & Sad, S. Selectively reduced intracellular proliferation of Salmonella enterica serovar typhimurium within APCs limits antigen presentation and development of a rapid CD8 T cell response. J. Immunol. 183, 3778–3787 (2009).

    Article  CAS  Google Scholar 

  6. Vidric, M., Bladt, A.T., Dianzani, U. & Watts, T.H. Role for inducible costimulator in control of Salmonella enterica serovar Typhimurium infection in mice. Infect. Immun. 74, 1050–1061 (2006).

    Article  CAS  Google Scholar 

  7. O'Brien, A.D., Scher, I. & Formal, S.B. Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infect. Immun. 25, 513–520 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Salcedo, S.P., Noursadeghi, M., Cohen, J. & Holden, D.W. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell. Microbiol. 3, 587–597 (2001).

    Article  CAS  Google Scholar 

  9. Lindgren, S.W., Stojiljkovic, I. & Heffron, F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 4197–4201 (1996).

    Article  CAS  Google Scholar 

  10. Stockinger, S. & Decker, T. Novel functions of type I interferons revealed by infection studies with Listeria monocytogenes. Immunobiology 213, 889–897 (2008).

    Article  CAS  Google Scholar 

  11. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  Google Scholar 

  12. Brennan, M.A. & Cookson, B.T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  Google Scholar 

  13. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  Google Scholar 

  14. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    Article  CAS  Google Scholar 

  15. Cho, Y.S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  Google Scholar 

  16. Scharton, K.T., Afonso, L.C., Wysocka, M., Trinchieri, G. & Scott, P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 154, 5320–5330 (1995).

    Google Scholar 

  17. Gross, O., Thomas, C.J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    Article  CAS  Google Scholar 

  18. Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  Google Scholar 

  19. Biron, C.A. Interferons α and β as immune regulators–a new look. Immunity 14, 661–664 (2001).

    Article  CAS  Google Scholar 

  20. Mancuso, G. et al. Type I IFN signaling is crucial for host resistance against different species of pathogenic bacteria. J. Immunol. 178, 3126–3133 (2007).

    Article  CAS  Google Scholar 

  21. Auerbuch, V., Brockstedt, D.G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D.A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  Google Scholar 

  22. O'Connell, R.M. et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200, 437–445 (2004).

    Article  CAS  Google Scholar 

  23. Thyrell, L. et al. Interferon α-induced apoptosis in tumor cells is mediated through the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. J. Biol. Chem. 279, 24152–24162 (2004).

    Article  CAS  Google Scholar 

  24. Miao, E.A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    Article  CAS  Google Scholar 

  25. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  26. Gobeil, S., Boucher, C.C., Nadeau, D. & Poirier, G.G. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ. 8, 588–594 (2001).

    Article  CAS  Google Scholar 

  27. Fink, S.L. & Cookson, B.T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol. 9, 2562–2570 (2007).

    Article  CAS  Google Scholar 

  28. Galluzzi, L. & Kroemer, G. Necroptosis: a specialized pathway of programmed necrosis. Cell 135, 1161–1163 (2008).

    Article  CAS  Google Scholar 

  29. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).

    Article  CAS  Google Scholar 

  30. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  Google Scholar 

  31. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    Article  CAS  Google Scholar 

  32. Lee, T.H., Shank, J., Cusson, N. & Kelliher, M.A. The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    Article  CAS  Google Scholar 

  33. Vandenabeele, P., Declercq, W., Van Herreweghe, F. & Vanden Berghe, T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4 (2010).

    Article  Google Scholar 

  34. McComb, S. et al. cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ. advance online publication, doi:10.1038/cdd.2012.59 (11 May 2012).

    Article  CAS  Google Scholar 

  35. van Faassen, H., Dudani, R., Krishnan, L. & Sad, S. Prolonged antigen presentation, APC−, and CD8+ T cell turnover during mycobacterial infection: comparison with Listeria monocytogenes. J. Immunol. 172, 3491–3500 (2004).

    Article  CAS  Google Scholar 

  36. Vince, J.E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  Google Scholar 

  37. Labbé, K., McIntire, C.R., Doiron, K., Leblanc, P.M. & Saleh, M. Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 35, 897–907 (2011).

    Article  Google Scholar 

  38. Knodler, L.A. & Finlay, B.B. Salmonella and apoptosis: to live or let die? Microbes Infect. 3, 1321–1326 (2001).

    Article  CAS  Google Scholar 

  39. Monack, D.M. et al. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J. Exp. Med. 192, 249–258 (2000).

    Article  CAS  Google Scholar 

  40. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  Google Scholar 

  41. Raupach, B., Peuschel, S.K., Monack, D.M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    Article  CAS  Google Scholar 

  42. Oberst, A. et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  Google Scholar 

  43. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl. Acad. Sci. USA 108, 20054–20059 (2011).

    Article  CAS  Google Scholar 

  44. Upton, J.W., Kaiser, W.J. & Mocarski, E.S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).

    Article  CAS  Google Scholar 

  45. Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl. Acad. Sci. USA 105, 3094–3099 (2008).

    Article  CAS  Google Scholar 

  46. Sing, A. et al. Bacterial induction of β interferon in mice is a function of the lipopolysaccharide component. Infect. Immun. 68, 1600–1607 (2000).

    Article  CAS  Google Scholar 

  47. Pejcic-Karapetrovic, B. et al. Pregnancy impairs the innate immune resistance to Salmonella typhimurium leading to rapid fatal infection. J. Immunol. 179, 6088–6096 (2007).

    Article  CAS  Google Scholar 

  48. Wong, C.E., Sad, S. & Coombes, B.K. Salmonella enterica serovar typhimurium exploits Toll-like receptor signaling during the host-pathogen interaction. Infect. Immun. 77, 4750–4760 (2009).

    Article  CAS  Google Scholar 

  49. Khan, R. et al. Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun. 13, 175–183 (2012).

    Article  CAS  Google Scholar 

  50. Gordon, M.A. et al. Invasive non-typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Clin. Infect. Dis. 50, 953–962 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Murali-Krishna (Emory University) for Ifnar−/− mice; V. Dixit (Genentech) for Rip3−/− mice; B. Beutler (The University of Texas Southwestern Medical Center) for the L929-ISRE cell line; and S. Thurston for technical help. Supported by the Canadian Institutes of Health Research (S.S.), the Ontario Institute of Cancer Research (L.K.) and the National Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

N.R., S.M., R.M. and R.D. performed experiments and analyzed the data. N.R., S.M., L.K. and S.S. designed the experiments and wrote the manuscript. S.S. and L.K. conceptualized the project, obtained research funding and provided reagents.

Corresponding author

Correspondence to Subash Sad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, N., McComb, S., Mulligan, R. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13, 954–962 (2012). https://doi.org/10.1038/ni.2397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing