Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock

A Corrigendum to this article was published on 19 July 2013

This article has been updated

Abstract

Lipopolysaccharide activates plasma-membrane signaling and endosomal signaling by Toll-like receptor 4 (TLR4) through the TIRAP-MyD88 and TRAM-TRIF adaptor complexes, respectively, but it is unclear how the signaling switch between these cell compartments is coordinated. In dendritic cells, we found that the p110δ isoform of phosphatidylinositol-3-OH kinase (PI(3)K) induced internalization of TLR4 and dissociation of TIRAP from the plasma membrane, followed by calpain-mediated degradation of TIRAP. Accordingly, inactivation of p110δ prolonged TIRAP-mediated signaling from the plasma membrane, which augmented proinflammatory cytokine production while decreasing TRAM-dependent endosomal signaling that generated anti-inflammatory cytokines (interleukin 10 and interferon-β). In line with that altered signaling output, p110δ-deficient mice showed enhanced endotoxin-induced death. Thus, by controlling the 'topology' of TLR4 signaling complexes, p110δ balances overall homeostasis in the TLR4 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p110δ isoform of PI(3)K is recruited to the LPS-activated TLR4 complex and controls TLR4 internalization in DCs.
Figure 2: The activity of p110δ in BMDCs is involved in the dissociation of TIRAP from the plasma membrane after stimulation with LPS.
Figure 3: PTEN regulates LPS-induced TIRAP degradation and TLR4 internalization in BMDCs, but SHIP does not.
Figure 4: 'Licensing' of calpain-induced TIRAP proteolysis by p110δ in BMDCs and J774 macrophages.
Figure 5: Inhibition of p110δ in BMDCs augments the production of proinflammatory cytokines while inhibiting IFN-β and the products of interferon-stimulated genes.
Figure 6: The kinase activity of p110δ in BMDCs is required for optimal IFN-β production through IRF3 and late activation of NF-κB and p38.
Figure 7: Inhibition of p110δ in mice augments endotoxin-mediated death.

Similar content being viewed by others

Change history

  • 08 April 2013

    In the version of this article initially published, the eighth author was identified incorrectly. The correct name is Inma M Berenjeno, and the initials should be I.M.B. in the Author Contributions section. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  2. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  Google Scholar 

  3. Kagan, J.C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    CAS  PubMed  Google Scholar 

  4. Kagan, J.C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  6. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    CAS  PubMed  Google Scholar 

  7. Barton, G.M. & Kagan, J.C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535–542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    CAS  PubMed  Google Scholar 

  10. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    CAS  PubMed  Google Scholar 

  11. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    CAS  PubMed  Google Scholar 

  12. Guillermet-Guibert, J. et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl. Acad. Sci. USA 105, 8292–8297 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  14. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  15. Koyasu, S. The role of PI3K in immune cells. Nat. Immunol. 4, 313–319 (2003).

    CAS  PubMed  Google Scholar 

  16. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    CAS  PubMed  Google Scholar 

  17. Guha, M. & Mackman, N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124–32132 (2002).

    CAS  PubMed  Google Scholar 

  18. Brown, J., Wang, H., Suttles, J., Graves, D.T. & Martin, M. Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J. Biol. Chem. 286, 44295–44305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Low, P.C. et al. Phosphoinositide 3-kinase δ regulates membrane fission of Golgi carriers for selective cytokine secretion. J. Cell Biol. 190, 1053–1065 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephens, L., Ellson, C. & Hawkins, P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14, 203–213 (2002).

    CAS  PubMed  Google Scholar 

  21. Botelho, R.J. et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stauffer, T.P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    CAS  PubMed  Google Scholar 

  23. Grinstein, S. Imaging signal transduction during phagocytosis: phospholipids, surface charge, and electrostatic interactions. Am. J. Physiol. Cell Physiol. 299, C876–C881 (2010).

    CAS  PubMed  Google Scholar 

  24. Papayannopoulos, V. et al. A polybasic motif allows N-WASP to act as a sensor of PIP2 density. Mol. Cell 17, 181–191 (2005).

    CAS  PubMed  Google Scholar 

  25. Lemmon, M.A., Ferguson, K.M., O'Brien, R., Sigler, P.B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92, 10472–10476 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gray, A., Van Der Kaay, J. & Downes, C.P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem. J. 344, 929–936 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148–155 (2006).

    CAS  PubMed  Google Scholar 

  29. Cao, X. et al. The inositol 3-phosphatase PTEN negatively regulates Fcγ receptor signaling, but supports Toll-like receptor 4 signaling in murine peritoneal macrophages. J. Immunol. 172, 4851–4857 (2004).

    CAS  PubMed  Google Scholar 

  30. Gunzl, P. et al. Anti-inflammatory properties of the PI3K pathway are mediated by IL-10/DUSP regulation. J. Leukoc. Biol. 88, 1259–1269 (2010).

    PubMed  Google Scholar 

  31. Leslie, N.R., Dixon, M.J., Schenning, M., Gray, A. & Batty, I.H. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv. Enzyme Regul. 52, 205–213 (2011).

    Google Scholar 

  32. Keck, S., Freudenberg, M. & Huber, M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. J. Immunol. 184, 5809–5818 (2010).

    CAS  PubMed  Google Scholar 

  33. Sly, L.M. et al. SHIP prevents lipopolysaccharide from triggering an antiviral response in mice. Blood 113, 2945–2954 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sorimachi, H., Ishiura, S. & Suzuki, K. Structure and physiological function of calpains. Biochem. J. 328, 721–732 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peltier, J. et al. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J. Am. Soc. Nephrol. 17, 3415–3423 (2006).

    CAS  PubMed  Google Scholar 

  36. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    CAS  PubMed  Google Scholar 

  37. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  38. Chang, E.Y., Guo, B., Doyle, S.E. & Cheng, G. Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J. Immunol. 178, 6705–6709 (2007).

    CAS  PubMed  Google Scholar 

  39. Beutler, B. & Cerami, A. Cachectin, cachexia, and shock. Annu. Rev. Med. 39, 75–83 (1988).

    CAS  PubMed  Google Scholar 

  40. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    CAS  PubMed  Google Scholar 

  41. Ohtani, M. et al. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635–643 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Androulidaki, A. et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31, 220–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guiducci, C. et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med. 205, 315–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868–880 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X. et al. Type I interferons protect neonates from acute inflammation through interleukin 10-producing B cells. J. Exp. Med. 204, 1107–1118 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crow, M.K. Type I interferon in organ-targeted autoimmune and inflammatory diseases. Arthritis Res. Ther. 12 Suppl 1, S5 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Uno, J.K. et al. Altered macrophage function contributes to colitis in mice defective in the phosphoinositide-3 kinase subunit p110δ. Gastroenterology 139, 1642–1653 (2010).

    CAS  PubMed  Google Scholar 

  51. Liu, Y. et al. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88. J. Immunol. 185, 3391–3400 (2010).

    CAS  PubMed  Google Scholar 

  52. Terebiznik, M.R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell Biol. 4, 766–773 (2002).

    CAS  PubMed  Google Scholar 

  53. Wang, N. et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 111, 99–107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tompa, P. et al. On the sequential determinants of calpain cleavage. J. Biol. Chem. 279, 20775–20785 (2004).

    CAS  PubMed  Google Scholar 

  55. Klippel, A., Escobedo, J.A., Hirano, M. & Williams, L.T. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14, 2675–2685 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    CAS  PubMed  Google Scholar 

  57. Bachmaier, K. et al. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat. Med. 13, 920–926 (2007).

    CAS  PubMed  Google Scholar 

  58. Nagpal, K. et al. A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling. J. Biol. Chem. 284, 25742–25748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Foukas, L.C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    CAS  PubMed  Google Scholar 

  60. Hammond, G.R., Schiavo, G. & Irvine, R.F. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2 . Biochem. J. 422, 23–35 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Medzhitov (Yale University) for expression vectors encoding GST-TIRAP, GFP-TIRAP and GST–TIRAP-4x ; S. Akira (Osaka University) and L. O'Neill (Trinity College, Dublin) for TLR4-, MyD88-, TRIF- or TIRAP-deficient mice; L. Stephens (Babraham Institute) for SHIP-1-deficient mice; L. Baud (Hôpital Tenon) for mice with transgenic expression of calpastatin; G. Schiavo (London Cancer Research Institute) for the 2C11 mouse monoclonal antibody to PtdIns(4,5)P2; T. Kinashi (Kyoto University) for the 5′ Myc membrane-targeted version of p110δ in the pMX-neo vector; T. Maffucci (Queen Mary, University of London) for GST–PLC-δ-PH and GST–Akt-PH; H. Stenmark (Oslo University Hospital) for GST–Hrs-FYVE; D. Gray (University of Edinburgh) for the XL-60 cell line; and B. Manoury, N. Leslie and members of the Centre for Cell Signalling for comments. Supported by the European Union Marie Curie (IEF-041713 to E.A. and IEF-274749 to S.T.); the European Molecular Biology Organization (ALTF 1083-2007 to E.A.); the Fondation ARC pour la Recherche sur la Cancer (SAE P2009); the Fund for Scientific Research Flanders; the Hercules Foundation and University of Ghent Multidisciplinary Research Partnership (for work in the laboratory of R.B.); the European Union Marie Curie International Graduate Program in Molecular Medicine (M.A.W.); and Cancer Research UK (C23338/A10200), the Ludwig Institute for Cancer Research and Queen Mary University of London (for work in the laboratory of B.V.).

Author information

Authors and Affiliations

Authors

Contributions

E.A. and B.V. developed the main hypothesis; E.A., S.T., D.T., S.D., A.H., W.P.P., I.M.B., G.N. and V.F. planned studies, did experiments and/or analyzed data; M.A.W., A.F. and R.B. contributed reagents, intellectual input and editorial assistance; E.A. and B.V. wrote the paper; B.V. supervised the project; and E.A. and B.V. obtained funding.

Corresponding authors

Correspondence to Ezra Aksoy or Bart Vanhaesebroeck.

Ethics declarations

Competing interests

B.V. is an advisor to Intellikine, GlaxoSmithKline and Activiomics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Tables 1–2 (PDF 1209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksoy, E., Taboubi, S., Torres, D. et al. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 13, 1045–1054 (2012). https://doi.org/10.1038/ni.2426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing