Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiviral B cell and T cell immunity in the lungs

Abstract

Respiratory viruses are frequent causes of repeated common colds, bronchitis and pneumonia, which often occur unpredictably as epidemics and pandemics. Despite those decimating effects on health and decades of intensive research, treatments remain largely supportive. The only commonly available vaccines are against influenza virus, and even these need improvement. The lung shares some features with other mucosal sites, but preservation of its especially delicate anatomical structures necessitates a fine balance of pro- and anti-inflammatory responses; well-timed, appropriately placed and tightly regulated T cell and B cell responses are essential for protection from infection and limitation of symptoms, whereas poorly regulated inflammation contributes to tissue damage and disease. Recent advances in understanding adaptive immunity should facilitate vaccine development and reduce the global effect of respiratory viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The roles of adaptive T cells and B cells in respiratory viral infection.

Kim Caesar/Nature Publishing Group

Figure 2: B cells and antibody in viral infection.

Kim Caesar/Nature Publishing Group

Figure 3: Maintenance of the tissue localization and function of TRM cells in the mucosa.

Kim Caesar/Nature Publishing Group

Similar content being viewed by others

References

  1. Heikkinen, T. & Järvinen, A. The common cold. Lancet 361, 51–59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Esposito, S. et al. Clinical and socio-economic impact of influenza and respiratory syncytial virus infection on healthy children and their households. Clin. Microbiol. Infect. 11, 933–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Nair, H. et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375, 1545–1555 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee, M.-S., Walker, R.E. & Mendelman, P.M. Medical burden of respiratory syncytial virus and parainfluenza virus type 3 infection among US children. Implications for design of vaccine trials. Hum. Vaccin. 1, 6–11 (2005).

    Article  PubMed  Google Scholar 

  5. Ruuskanen, O., Lahti, E., Jennings, L.C. & Murdoch, D.R. Viral pneumonia. Lancet 377, 1264–1275 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Asner, S.A. et al. Clinical severity of rhinovirus/enterovirus compared to other respiratory viruses in children. Influenza Other Respir. Viruses 8, 436–442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Greenberg, S. Update on rhinovirus and coronavirus infections. Semin. Respir. Crit. Care Med. 32, 433–446 (2011).

    Article  PubMed  Google Scholar 

  8. Kroll, J. & Weinberg, A. Human metapneumovirus. Semin. Respir. Crit. Care Med. 32, 447–453 (2011).

    Article  PubMed  Google Scholar 

  9. Bautista, E. et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N. Engl. J. Med. 362, 1708–1719 (2010).

    Article  PubMed  Google Scholar 

  10. Peiris, J.S.M., Yuen, K.Y., Osterhaus, A.D.M.E. & Stöhr, K. The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431–2441 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Guery, B. et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission. Lancet 381, 2265–2272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Manzoli, L., Ioannidis, J.P.A., Flacco, M.E., Vito, C.D. & Villari, P. Effectiveness and harms of seasonal and pandemic influenza vaccines in children, adults and elderly: a critical review and re-analysis of 15 meta-analyses. Hum. Vaccin. Immunother. 8, 851–862 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plotkin, S.A. Complex correlates of protection after vaccination. Clin. Infect. Dis. 56, 1458–1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Crowe, J.E. Jr. & Williams, J.V. Immunology of viral respiratory tract infection in infancy. Paediatr. Respir. Rev. 4, 112–119 (2003).

    Article  PubMed  Google Scholar 

  15. Goronzy, J.J. & Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Couch, R.B. & Kasel, J.A. Immunity to influenza in man. Annu. Rev. Microbiol. 37, 529–549 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Glanville, N. et al. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein. PLoS Pathog. 9, e1003669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Openshaw, P.J. & Chiu, C. Protective and dysregulated T cell immunity in RSV infection. Curr. Opin. Virol. 3, 468–474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Woodland, D.L. & Randall, T.D. Anatomical features of anti-viral immunity in the respiratory tract. Semin. Immunol. 16, 163–170 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raz, E. Organ-specific regulation of innate immunity. Nat. Immunol. 8, 3–4 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Snelgrove, R.J. et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 9, 1074–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Dinwiddie, D.L., Harrod, K.S., Jiang, Y. & Kim, K.C. Anti-inflammatory effect of MUC1 during respiratory syncytial virus infection of lung epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L558–L563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansel, T.T., Johnston, S.L. & Openshaw, P.J. Microbes and mucosal immune responses in asthma. Lancet 381, 861–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, E.M., Sadarangani, M. & Finlay, B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. McDermott, A.J. & Huffnagle, G.B. The microbiome and regulation of mucosal immunity. Immunology 142, 24–31 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han, M.K. et al. Significance of the microbiome in obstructive lung disease. Thorax 67, 456–463 (2012).

    Article  PubMed  Google Scholar 

  28. Wang, J. et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat. Commun. 4, 2106 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. Cleaver, J.O. et al. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol. 7, 78–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Barlow, P.G., Findlay, E.G., Currie, S.M. & Davidson, D.J. Antiviral potential of cathelicidins. Future Microbiol. 9, 55–73 (2013).

    Article  CAS  Google Scholar 

  31. Vareille, M., Kieninger, E., Edwards, M.R. & Regamey, N. The airway epithelium: soldier in the fight against respiratory viruses. Clin. Microbiol. Rev. 24, 210–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoo, J.-K., Kim, T.S., Hufford, M.M. & Braciale, T.J. Viral infection of the lung: host response and sequelae. J. Allergy Clin. Immunol. 132, 1263–1276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guilliams, M., Lambrecht, B.N. & Hammad, H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 6, 464–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Legge, K.L. & Braciale, T.J. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18, 265–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Legge, K.L. & Braciale, T.J. Lymph node dendritic cells control CD8+ T cell responses through regulated FasL expression. Immunity 23, 649–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Culley, F.J. Natural killer cells in infection and inflammation of the lung. Immunology 128, 151–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohlmeier, J.E. et al. Interferons regulate cytolytic activity of memory CD8+ T cells in the lung airways during respiratory virus challenge. Immunity 33, 96–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. González-Navajas, J.M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Plotkin, S.A. & Plotkin, S.A. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  PubMed  Google Scholar 

  40. Morokutti, A. et al. Validation of the modified hemagglutination inhibition assay (mHAI), a robust and sensitive serological test for analysis of influenza virus-specific immune response. J. Clin. Virol. 56, 323–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Grund, S., Adams, O., Wählisch, S. & Schweiger, B. Comparison of hemagglutination inhibition assay, an ELISA-based micro-neutralization assay and colorimetric microneutralization assay to detect antibody responses to vaccination against influenza A H1N1 2009 virus. J. Virol. Methods 171, 369–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Van Remmerden, Y. et al. An improved respiratory syncytial virus neutralization assay based on the detection of green fluorescent protein expression and automated plaque counting. Virol. J. 9, 253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Falsey, A.R., Formica, M.A. & Walsh, E.E. Microneutralization assay for the measurement of neutralizing antibodies to human metapneumovirus. J. Clin. Virol. 46, 314–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jegaskanda, S., Reading, P.C. & Kent, S.J. Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. J. Immunol. 193, 469–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Gupta, N. et al. Affinity-purified respiratory syncytial virus antibodies from intravenous immunoglobulin exert potent antibody-dependent cellular cytotoxicity. PLoS ONE 8, e69390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Renegar, K.B., Small, P.A., Boykins, L.G. & Wright, P.F. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J. Immunol. 173, 1978–1986 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Van Riet, E., Ainai, A., Suzuki, T. & Hasegawa, H. Mucosal IgA responses in influenza virus infections; thoughts for vaccine design. Vaccine 30, 5893–5900 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Asahi, Y. et al. Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines. J. Immunol. 168, 2930–2938 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Asahi-Ozaki, Y. et al. Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J. Med. Virol. 74, 328–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Spiekermann, G.M. et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life functional expression of FcRn in the mammalian lung. J. Exp. Med. 196, 303–310 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102, 531–537 (1998).

  52. Batista, F.D. & Harwood, N.E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Moyron-Quiroz, J.E. et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25, 643–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. MacLennan, I.C.M. & Vinuesa, C.G. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity 17, 235–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. McNamara, P.S. et al. Respiratory syncytial virus infection of airway epithelial cells, in vivo and in vitro, supports pulmonary antibody responses by inducing expression of the B cell differentiation factor BAFF. Thorax 68, 76–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McHeyzer-Williams, M., Okitsu, S., Wang, N. & McHeyzer-Williams, L. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24–34 (2012).

    Article  CAS  Google Scholar 

  58. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Nutt, S.L. & Tarlinton, D.M. Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat. Immunol. 12, 472–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Boyden, A.W., Legge, K.L. & Waldschmidt, T.J. Pulmonary infection with influenza A virus induces site-specific germinal center and T follicular helper cell responses. PLoS ONE 7, e40733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chu, V.T. & Berek, C. The establishment of the plasma cell survival niche in the bone marrow. Immunol. Rev. 251, 177–188 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Liang, B., Hyland, L. & Hou, S. Nasal-associated lymphoid tissue Is a site of long-term virus-specific antibody production following respiratory virus infection of mice. J. Virol. 75, 5416–5420 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rookhuizen, D.C. & DeFranco, A.L. Toll-like receptor 9 signaling acts on multiple elements of the germinal center to enhance antibody responses. Proc. Natl. Acad. Sci. USA 111, E3224–E3233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chevrier, S. et al. The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. J. Exp. Med. 211, 827–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goodnow, C.C., Vinuesa, C.G., Randall, K.L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Zuccarino-Catania, G.V. et al. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15, 631–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yewdell, J.W. Viva la Revolución: rethinking influenza A virus antigenic drift. Curr. Opin. Virol. 1, 177–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McIntyre, C.L., Knowles, N.J. & Simmonds, P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol. 94, 1791–1806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martinelli, M. et al. Phylogeny and population dynamics of respiratory syncytial virus (Rsv) A and B. Virus Res. 189, 293–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Hall, C., Walsh, E., Long, C. & Schnabel, K. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Munir, S. et al. Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog. 7, e1001336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chirkova, T. et al. Respiratory syncytial virus G protein CX3C motif impairs human airway epithelial and immune cell responses. J. Virol. 87, 13466–13479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Falsey, A.R., Singh, H.K. & Walsh, E.E. Serum antibody decay in adults following natural respiratory syncytial virus infection. J. Med. Virol. 78, 1493–1497 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Pratama, A. & Vinuesa, C.G. Control of TFH cell numbers: why and how? Immunol. Cell Biol. 92, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Lee, S.K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cannons, J.L., Lu, K.T. & Schwartzberg, P.L. T follicular helper cell diversity and plasticity. Trends Immunol. 34, 200–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, Y.S. et al. Bcl6 dependent T follicular helper cell differentiation diverges from effector cell differentiation during priming and depends on the gene Icos. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tubo, N.J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ballesteros-Tato, A. et al. Interleukin-2 Inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bentebibel, S.-E. et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5, 176ra32–176ra32 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Spensieri, F. et al. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses. Proc. Natl. Acad. Sci. USA 110, 14330–14335 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baumjohann, D. et al. The microRNA cluster miR-1792 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 14, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang, S.G. et al. MicroRNAs of the miR-1792 family are critical regulators of TFH differentiation. Nat. Immunol. 14, 849–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE 6, e16245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, Y. et al. High levels of virus-specific CD4+ T cells predict severe pandemic influenza A virus infection. Am. J. Respir. Crit. Care Med. 186, 1292–1297 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Heidema, J. et al. Dynamics of human respiratory virus-specific CD8+ T cell responses in blood and airways during episodes of common cold. J. Immunol. 181, 5551–5559 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Christensen, J.P., Doherty, P.C., Branum, K.C. & Riberdy, J.M. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8+ T-cell memory. J. Virol. 74, 11690–11696 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Graham, B.S., Bunton, L.A., Wright, P.F. & Karzon, D.T. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J. Clin. Invest. 88, 1026–1033 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fishaut, M., Tubergen, D. & McIntosh, K. Cellular response to respiratory viruses with particular reference to children with disorders of cell-mediated immunity. J. Pediatr. 96, 179–186 (1980).

    Article  CAS  PubMed  Google Scholar 

  92. Wilkinson, T.M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Chirkova, T.V. et al. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine. Clin. Vaccine Immunol. 18, 1710–1718 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D. & Perlman, S. Virus-specific memory CD8 T cells provide substantial protection from lethal SARS-CoV infection. J. Virol. 88, 11034–11044 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Herd, K.A., Nelson, M., Mahalingam, S. & Tindle, R.W. Pulmonary infection of mice with human metapneumovirus induces local cytotoxic T-cell and immunoregulatory cytokine responses similar to those seen with human respiratory syncytial virus. J. Gen. Virol. 91, 1302–1310 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Braciale, T.J., Sun, J. & Kim, T.S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 12, 295–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krishnamoorthy, N. et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat. Med. 18, 1525–1530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bystrom, J., Al-Adhoubi, N., Al-Bogami, M., Jawad, A. & Mageed, R. Th17 lymphocytes in respiratory syncytial virus infection. Viruses 5, 777–791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Cauley, L.S. & Lefrançois, L. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 6, 14–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Schenkel, J.M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schenkel, J.M., Fraser, K.A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Teijaro, J.R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Mackay, L.K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Ray, S.J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, T.S., Gorski, S.A., Hahn, S., Murphy, K.M. & Braciale, T.J. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8+ T cell differentiation by a CD24-dependent mechanism. Immunity 40, 400–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Slütter, B., Pewe, L.L., Kaech, S.M. & Harty, J.T. Lung airway-surveilling CXCR3hi memory CD8+ T cells are critical for protection against influenza A virus. Immunity 39, 939–948 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Mikhak, Z., Strassner, J.P. & Luster, A.D. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 210, 1855–1869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Iijima, N. & Iwasaki, A. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, M.O. & Flavell, R.A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carlson, C.M. et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 6, e1001136 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Everitt, A.R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wakim, L.M., Gupta, N., Mintern, J.D. & Villadangos, J.A. Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 14, 238–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bruder, D., Srikiatkhachorn, A. & Enelow, R.I. Cellular immunity and lung injury in respiratory virus infection. Viral Immunol. 19, 147–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. De Jong, M.D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Walsh, K.B. et al. Animal model of respiratory syncytial virus: CD8+ T cells cause cytokine storm that is chemically tractable by sphingosine-1-phosphate 1 receptor agonist therapy. J. Virol. 88, 6281–6293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cannon, M.J., Openshaw, P.J. & Askonas, B.A. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J. Exp. Med. 168, 1163–1168 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Smyth, R.L. & Openshaw, P.J. Bronchiolitis. Lancet 368, 312–322 (2006).

    Article  PubMed  Google Scholar 

  122. Tscherne, D.M. & García-Sastre, A. Virulence determinants of pandemic influenza viruses. J. Clin. Invest. 121, 6–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barik, S. Respiratory syncytial virus mechanisms to interfere with type 1 interferons. Curr. Top. Microbiol. Immunol. 372, 173–191 (2013).

    CAS  PubMed  Google Scholar 

  124. Tripp, R.A., Jones, L.P., Zheng, H., Murphy, P.M. & Anderson, L.J. CX3C chemokine mimcry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Welliver, T.P. et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J. Infect. Dis. 195, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Moghaddam, A. et al. A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nat. Med. 12, 905–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Delgado, M.F. et al. Lack of antibody affinity maturation due to poor Toll stimulation led to enhanced RSV disease. Nat. Med. 15, 34–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Polack, F.P. et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. de Swart, R.L. et al. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J. Virol. 76, 11561–11569 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Loebbermann, J., Durant, L., Thornton, H., Johansson, C. & Openshaw, P.J. Defective immunoregulation in RSV vaccine-augmented viral lung disease restored by selective chemoattraction of regulatory T cells. Proc. Natl. Acad. Sci. USA 110, 2987–2992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mukherjee, S. et al. IL-17–induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am. J. Pathol. 179, 248–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stoppelenburg, A.J. et al. Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection. PLoS ONE 8, e78461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, J., Madan, R., Karp, C.L. & Braciale, T.J. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat. Med. 15, 277–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. León, B., Bradley, J.E., Lund, F.E., Randall, T.D. & Ballesteros-Tato, A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat. Commun. 5, 3495 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Loebbermann, J. et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 5, 161–172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tricco, A.C. et al. Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis. BMC Med. 11, 153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Belshe, R.B. et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J. Infect. Dis. 181, 1133–1137 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Schmidt, A. Progress in respiratory virus vaccine development. Semin. Respir. Crit. Care Med. 32, 527–540 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chiu, C. et al. Cross-reactive humoral responses to influenza and their implications for a universal vaccine. Ann. NY Acad. Sci. 1283, 13–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. McLellan, J.S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Chiu or Peter J Openshaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, C., Openshaw, P. Antiviral B cell and T cell immunity in the lungs. Nat Immunol 16, 18–26 (2015). https://doi.org/10.1038/ni.3056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.3056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing