Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

HIV reservoirs as obstacles and opportunities for an HIV cure

Abstract

The persistence of HIV reservoirs remains a formidable obstacle to achieving sustained virologic remission in HIV-infected individuals after antiretroviral therapy (ART) is discontinued, even if plasma viremia has been successfully suppressed for prolonged periods of time. Numerous approaches aimed at eradicating the virus, as well as maintaining its prolonged suppression in the absence of ART, have had little success. A better understanding of the pathophysiologic nature of HIV reservoirs and the impact of various interventions on their persistence is essential for the development of successful therapeutic strategies against HIV or the long-term control of infection. Here, we discuss the persistent HIV reservoir as a barrier to cure as well as the current therapeutic strategies aimed at eliminating or controlling the virus in the absence of ART.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complex nature of HIV reservoirs in infected individuals receiving ART.
Figure 2: Path to achieving sustained virologic remission in infected individuals following discontinuation of ART.

Similar content being viewed by others

References

  1. UN Joint Programme on HIV/AIDS (UNAIDS). Global Report: UNAIDS Report on the Global AIDS Epidemic 2013 http://www.unaids.org/sites/default/files/en/media/unaids /contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf (UNAIDS, 2013).

  2. Johnson, L.F. et al. Life expectancies of South African adults starting antiretroviral treatment: collaborative analysis of cohort studies. PLoS Med. 10, e1001418 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakagawa, F., May, M. & Phillips, A. Life expectancy living with HIV: recent estimates and future implications. Curr. Opin. Infect. Dis. 26, 17–25 (2013).

    Article  PubMed  Google Scholar 

  4. Davey, R.T. Jr. et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 96, 15109–15114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deeks, S.G. et al. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Chun, T.W. et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94, 13193–13197 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, J.K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Siliciano, J.D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chun, T.W. et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest. 115, 3250–3255 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher, C.V. et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 111, 2307–2312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cory, T.J., Schacker, T.W., Stevenson, M. & Fletcher, C.V. Overcoming pharmacologic sanctuaries. Curr. Opin. HIV AIDS 8, 190–195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maldarelli, F. et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner, T.A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohn, L.B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chun, T.W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ho, Y.C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chun, T.W. et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat. Med. 5, 651–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Prins, J.M. et al. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 13, 2405–2410 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Perelson, A.S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Chun, T.W., Davey, R.T. Jr., Engel, D., Lane, H.C. & Fauci, A.S. Re-emergence of HIV after stopping therapy. Nature 401, 874–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Margolis, D.M. Histone deacetylase inhibitors and HIV latency. Curr. Opin. HIV AIDS 6, 25–29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Archin, N.M. et al. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS 22, 1131–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Routy, J.P. et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med. 13, 291–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Archin, N.M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elliott, J.H. et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 10, e1004473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen, T.A. et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).

    Article  PubMed  Google Scholar 

  30. Blazkova, J. et al. Effect of histone deacetylase inhibitors on HIV production in latently infected, resting CD4+ T cells from infected individuals receiving effective antiretroviral therapy. J. Infect. Dis. 206, 765–769 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bullen, C.K., Laird, G.M., Durand, C.M., Siliciano, J.D. & Siliciano, R.F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med. 20, 425–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shan, L. et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hütter, G. et al. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  35. Yukl, S.A. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 9, e1003347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kordelas, L. et al. Shift of HIV tropism in stem-cell transplantation with CCR5 delta32 mutation. N. Engl. J. Med. 371, 880–882 (2014).

    Article  PubMed  Google Scholar 

  37. Hütter, G. More on shift of HIV tropism in stem-cell transplantation with CCR5 delta32/delta32 mutation. N. Engl. J. Med. 371, 2437–2438 (2014).

    Article  PubMed  Google Scholar 

  38. Henrich, T.J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stone, D., Kiem, H.P. & Jerome, K.R. Targeted gene disruption to cure HIV. Curr. Opin. HIV AIDS 8, 217–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker, B.D. & Yu, X.G. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13, 487–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Chun, T.W. et al. Effect of antiretroviral therapy on HIV reservoirs in elite controllers. J. Infect. Dis. 208, 1443–1447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hatano, H. et al. Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J. Virol. 83, 329–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Mens, H. et al. HIV-1 continues to replicate and evolve in patients with natural control of HIV infection. J. Virol. 84, 12971–12981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Migueles, S.A. & Connors, M. Long-term nonprogressive disease among untreated HIV-infected individuals: clinical implications of understanding immune control of HIV. J. Am. Med. Assoc. 304, 194–201 (2010).

    Article  CAS  Google Scholar 

  46. Chun, T.W. et al. Early establishment of a pool of latently infected, resting CD4+ T cells during primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 95, 8869–8873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Whitney, J.B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512, 74–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340, 1605–1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Chun, T.W. et al. Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J. Infect. Dis. 195, 1762–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hecht, F.M. et al. A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. J. Infect. Dis. 194, 725–733 (2006).

    Article  PubMed  Google Scholar 

  51. Persaud, D. et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369, 1828–1835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sáez-Cirión, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luzuriaga, K. et al. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 372, 786–788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corey, L. et al. HIV-1 vaccines and adaptive trial designs. Sci. Transl. Med. 3, 79ps13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Burton, D.R. et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carcelain, G. & Autran, B. Immune interventions in HIV infection. Immunol. Rev. 254, 355–371 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Moir, S., Malaspina, A. & Fauci, A.S. Prospects for an HIV vaccine: leading B cells down the right path. Nat. Struct. Mol. Biol. 18, 1317–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Chun, T.W. et al. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir. Proc. Natl. Acad. Sci. USA 111, 13151–13156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barouch, D.H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shingai, M. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 503, 277–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halper-Stromberg, A. et al. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158, 989–999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barouch, D.H. & Deeks, S.G. Immunologic strategies for HIV-1 remission and eradication. Science 345, 169–174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eriksson, S. et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9, e1003174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Wook Chun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, TW., Moir, S. & Fauci, A. HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol 16, 584–589 (2015). https://doi.org/10.1038/ni.3152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.3152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing