Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serine protease inhibitor 2A is a protective factor for memory T cell development

Abstract

An essential event in the development of memory CD8+ T lymphocytes is the escape of progenitors from programmed cell death, but how this is mediated is unclear. Here we report that the gene encoding serine protease inhibitor 2A (Spi2A), an inhibitor of lysosomal executioner proteases dependent on transcription factor NF-κB, is upregulated in memory cell precursors. Spi2A upregulation protected lymphocytic choriomeningitis virus–specific memory progenitors from programmed cell death. Thus, Spi2A promotes the survival of cytotoxic T lymphocytes, allowing them to differentiate into memory CD8 T cells. These findings suggest a model in which commitment to the memory lineage is facilitated by the upregulation of protective genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression in CD8 T cell populations.
Figure 2: Spi2A expression and PCD in bone marrow chimeras.
Figure 3: Spi2A affects the number of LCMV-specific CD8 T cells.
Figure 4: Effect of cathepsin B inhibition on the CD8 T cell response to LCMV.
Figure 5: Spi2A facilitates the development of memory CD8 T cells.

Similar content being viewed by others

References

  1. Zinkernagel, R.M. & Doherty, P.C. Restriction of in vitro T cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semi-allogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. Huesel, J.W., Wesselschmidt, S., Shresta, S., Russell, J.H. & Ley, T.J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    Article  Google Scholar 

  3. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kagi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed, R. & Gray, D. Immunological memory and protective Immunity: understanding their relationship. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Berard, M. & Tough, D.F. Qualitative differences between naive and memory T cells. Immunology 106, 127–138 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hu, H. et al. CD4+ T cell effectors can become memory cells with high efficiency and without further cell division. Nat. Immunol. 2, 705–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, N. et al. NF-κB protects from the lysosomal pathway of cell death. EMBO J. 22, 5313–5322 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Medhurst, A.D. et al. The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J. Neurosci. Meth. 98, 9–20 (2000).

    Article  CAS  Google Scholar 

  15. Kaech, S.M. et al. Selective expression of the interferon 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2004).

    Article  Google Scholar 

  16. Madakamutil, L.T. et al. CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science 304, 590–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zang, X. & Ren, R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model of chronic myelogenous leukemia. Blood 92, 3829–3840 (1998).

    Google Scholar 

  18. Fueng-Leung, W.P. et al. CD8 is needed for development of cytotoxic cells but not helper cells. Cell 65, 443–449 (1991).

    Article  Google Scholar 

  19. Sun, J. et al. A new family of 10 murine ovalbumin serpins includes two homologs of proteinase inhibitor 8 and two homologs of the granzyme B inhibitor (proteinase inhibitor 9). J. Biol. Chem. 272, 15434–15441 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Inglis, J.D., Lee, M., Davidson, D.R. & Hill, R.E. Isolation of two cDNAs encoding novel α1-antichymotrypsin-like proteins in a murine chondrocytic cell line. Gene 106, 213–220 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, Y., Yamamoto, K. & Sinohara, H. Molecular cloning and sequence analysis of full-length cDNA coding for mouse contrapsin. J. Biochem 108, 344–346 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, N., Wang, Y. & Ashton-Rickardt, P.G. Serine protease inhibitor 2A (Spi2A) inhibits caspase-independent programmed cell death. FEBS Lett. 569, 49–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Michallet, M.C., Saltel, F., Flacher, M., Revillard, J.P. & Genestier, L. Cathepsin-dependent apoptosis triggered by supraoptimal activation of T lymphocytes: a possible mechanism of high dose tolerance. J. Immunol. 172, 5405–5414 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell. Biol. 153, 999–1009 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Guicciardi, M.E. et al. Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127–1137 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Idziorek, T., Estaquier, J., DeBels, F. & Ameisen, J.-C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods 185, 249–258 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Hou, S., Hyland, L., Ryan, K.W., Portner, A. & Doherty, P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Suresh, M. et al. Role of CD28-B7 interactions in generation and maintenance of CD8 T cell memory. J. Immunol. 167, 5565–5573 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Grayson, J.M., Murali-Krishna, K., Altman, J.D. & Ahmed, R. Gene expression in antigen-specific CD8+ T cells during viral infection. J. Immunol. 166, 795–799 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Grayson, J.M., Zajac, A.J., Altman, J.D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Razvi, E.S., Jiang, Z., Woda, B.A. & Welsh, R.M. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Path. 147, 79–91 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Petschner, F. et al. Constitutive expression of Bcl-xL or Bcl-2 prevents peptide antigen-induced T cell deletion but does not influence T cell homeostasis after viral infection. Eur. J. Immunol. 28, 560–569 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Ferri, K.F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3, E255–E263 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Badovanic, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1357 (2000).

    Article  Google Scholar 

  35. Hettmann, T., Opferman, J.T., Leiden, J.M. & Ashton-Rickardt, P.G. A critical role for NF-κB transcription factors in the development CD8+ memory-phenotype T cells. Immunol. Lett. 85, 297–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Mora, A.L. et al. Antiapoptotic function of NF-κB in T lymphocytes is influenced by their differentiation status: roles of Fas, and Bcl-XL . Cell Death Differ. 10, 1032–1044 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Badovinac, V.P., Porter, B.B. & Harty, J.T. CD8+ T cell contraction is controlled by early inflammation. Nat. Immunol. 5, 809–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hamerman, J.A. et al. Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J. Immunol. 168, 2415–2423 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Balaji, K.N., Schaschke, N., Machleidt, W., Catlfamo, M. & Henkart, P.A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chen, L., Woo, M., Hakem, R. & Miller, J.D. Perforin-dependent activation-induced cell death acts through caspase 3 but not through caspases 8 or 9. Eur. J. Immunol. 33, 769–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Markiewicz, M.A. et al. Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 95, 3065–3070 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lin, M.Y. & Welsh, R.M. Stability and diversity of T cell receptor repertoire usage during lymphocytic virus infection of mice. J. Exp. Med. 188, 1993–2001 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ober, B.T. et al. Affinity of thymic self-peptides for the TCR determines the selection of CD8+ T lymphocytes in the thymus. Int. Immunol. 12, 1353–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Coligan, J.E., Kruisbeek, A.M., Margulis, D.H., Shevach, E.M. & Strober, W. Current Protocols in Immunology (John Wiley and Sons, New York, 1995).

    Google Scholar 

  46. Wognum, A.W., Visser, T.P., Peters, K., Bierhuizen, M.F.A. & Wagemaker, G. Stimulation of mouse bone marrow cells with Kit ligand, FLT3 ligand and thrombopoietin leads to efficient retroviral-mediated gene transfer to stem cells, whereas interleukin 3 and interleukin 11 reduces transduction of short- and long-term repopulating cells. Hum. Gene Ther. 11, 2129–2141 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Welsh for high-titer stocks of LCMV Armstrong; J. Marvin and R. Duggan for help with flow cytometry; and G. Franzoso and S. Byrne for comments. Supported by Medical Scientist Training Program (GM07281 to T.P.) and National Institutes of Health (AI45108 to P.G.A-R.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G Ashton-Rickardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of epitope-tagged Spi2A in BM chimeras. (PDF 98 kb)

Supplementary Fig. 2

Effect of Spi2A expression on the level of IL-7Rhi anti-LCMV CD8 T cells. (PDF 86 kb)

Supplementary Fig. 3

Effect of Spi2A on the level of IL-7R expression in anti-LCMV CD8 T cells. (PDF 66 kb)

Supplementary Fig. 4

Induction of Spi2A mRNA in CD8 T cells by IL-7 in vitro. (PDF 63 kb)

Supplementary Fig. 5

Inhibition of cathepsin B reduces PCD of anti-LCMV CD8 T cells in vitro. (PDF 78 kb)

Supplementary Fig. 6

Effect of CA-074 Me and Spi2A on cytoplasmic cathepsin B activity. (PDF 72 kb)

Supplementary Table 1

DNA 11kA array analysis of gene expression in B6.2.16 CD8 cells. (PDF 132 kb)

Supplementary Table 2

DNA 11kB array analysis of gene expression in B6.2.16 CD8 cells. (PDF 100 kb)

Supplementary Table 3

Relative Expression of Candidate genes in Memory compared to Naïve CD8 cells. (PDF 42 kb)

Supplementary Table 4

Generation of bone marrow chimeras transduced with retrovirus. (PDF 30 kb)

Supplementary Table 5

Levels of thymocytes in bone marrow chimeras transduced with retrovirus. (PDF 31 kb)

Supplementary Table 6

Levels of mature T cells in peripheral lymphoid organs of chimeras transduced with retrovirus. (PDF 33 kb)

Supplementary Methods (PDF 62 kb)

Supplementary Note 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Phillips, T., Zhang, M. et al. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat Immunol 5, 919–926 (2004). https://doi.org/10.1038/ni1107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing